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PREFACE

The initial development of this analysis was conducted under Corporate
sponsored independent research and development funding at United Technologles
Research Center. Extensive refinements to the analysis were made under spon-
sorship of the lLangley Research Center of the National Aeronautics and Space
Administration and the U. S. Army Air Mobility Research and Development Labo-
ratory, Langley Directorate as part of Contract NAS1-10960. The purpose of
this contract was to perform an investigation of a bearingless helicopter
rotor concept having a composite primary structure. A companion report to
the one herein is NASA CR- 2637 which presents the results of-graphite/epoxy
fatigue tests, wind tunnel experiments, correlation studies, and a preliminary
design of a full scale helicopter rotor, also obtained under this contract.
The correlation studies were used to provide limited validation of the herein

described analysis, and the preliminary full scale design study involved sub-

stantial use of the analysis to investigate the structural dynamics and asero-
elastics of the design.

The author wishes to express his appreciation to Mr. C. E. Swindlehurst
and Dr. W. F. White for their encouragement and useful comments.
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AFROELASTIC ANATYSIS FOR HELICOPTER ROTOR BLADES
WITH TIME-VARTABLE, NONLINEAR STRUCTURAL TWIST
AND MULTTPLE STRUCTURAL REDUNDANCY - MATHEMATICAL
DERTVATION AND PROGRAM USER'S MANUAL

by

Richard L. Bielawa
United Technologies Research Center

- SUMMARY

The differential equationg of motion for the lateral and torsional
deformations of a nonlinearly twisted rotor blade in steady flight conditions
together with those additional aeroelastic features germane to COmposite
bearingless rotors are derived. The differential equations are formulated in
terms of uncoupled (zero pitch and twist) vibratory modes with exact coupling
effects due to finite, time variable blade pitch and, to second order, twist.
Also presented are derivations of the fully coupled inertia and aerodynamic
load distributions, automatic pitch change coupling effects, structural redun-
dancy characteristics of the composite bearingless rotor flexbeam — torque tube
system in bending and torsion, and a description of the linearized equations
appropriate for eigensolution analyses. Three appendices are included pre-~
senting material appropriate to the digitel computer program impleméntation
of the analysis, program GLOO.



INTRODUCTION

The composite bearingless rotor employs for its primary structural
element a spar fashioned from radially aligned uniaxial high strength fibers
(carbon, boron, etc.) in an epoxy matrix. The transverse shear modulus of
such a spar is sufficiently low to produce a torsionally flexible member which
when installed over a finite length (designated the flexbeam) replaces the
feathering bearings normally used for blade pitch control. Figure 1 shows the
schematic of a typical rotor employing such a spar. Blade pitch control is
achieved by elastically twisting the inboard portion of the spar; the moment
applied to the blade from the push-rod is transmitted through the aerodynamic
shell or torque tube which, like the outer portion of the blade, is relatively
stiff in torsion.

These structural features produce unique aseroelastic characteristics not
readily amenable to conventional analysis: First, the primary structural
member, the spar and included flexbeam 1is subjected to highly nonlinear and
time varying structural twist which, over the flexbeam span, can approach
(equivalent) total span twist angles of +90°. Second, although the torque
tube and flexbeam have contrasting specialized structural functions (torsion
and bending load transmissibilities, respectively) each nonetheless exhibits
significant amounts of both types of load transmissibility. Hence, the torque
tube - flexbeam system comprises a doubly redundant structure: redundancy both
in torsion and in bending. Third, the simple torque tube shown in Fig. 1 is
that of a "cantilevered" configuration wherein the inboard end is supported
both 1in shear and torque solely by the push-rod. Such a configuration pro-
duces not only a soft blade torsion system, but a high degree of pitch-flsap
coupling.

Because of these resulting unique aseroelastic characteristics, none of
the various "comprehensive" (nonlinear) rotor aerocelastic analyses currently
available (e.g., Refs. 1, 2, and 3) can be justifiably applied to the bearing-
less rotor. Most of the difficulties encountered with these analyses are due,
in one form or another, to inappropriate assumptions made with regard to struc-
tural twist. Compared on this basis, the various analyses generally fall into
either of two categories. In the first category, the structural twist is
assumed to be linear, small, and temporally constant; such an assumption is
clearly at variance with the aforementioned twist characteristics of bearing-
less rotors. In the second category, large nonlinear structural twists are
incorporated by the use of "coupled modes" wherein the blade bending elasticity
is defined by the use of the normal (vibrational) modes of an arbitrarily
pretwisted blade st some nominal fixed collective angle. Unfortunately, such
an approach is rigorous only in hover wherein the control angle is constant and
equal to the nominal collective angle. Generally, the use of coupled modal
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Figure 1. - Composite Bearingless Rotor



analyses for typical forward flight cases involving substantial cyclic angles
leads to an obvious contradiction of the inherent assumptions upon which
coupled modes are predicted. To rectify this conceptual deficiency, coupled
mpde.analyses'must'incorpbrate, in some fashion, the mode shape and modal .
frequency variations over the appropriate pitch angle range as defined by the
given flight case. This invariably leads either to extreme complexity. and
resulting computer storage and run-time requirements, or to various simplifying
approximations to the variations of the mode shapes and frequencies with pitch
angle. Either of these consequences, however, tend to nullify the advantages
claimed for "coupled mode"” analyses. In Ref. 3 is presented a consistent sys-
tematic development of such a coupled mode analyses which rigorously addresses
itself to the problem arising from variable pitch angle. However, even for
this exemplary analysis, the time variable (perturbational) pitch angle is
assumed to be small, constant with span and, hence, inappropriate to the
requirements of composite bearingless rotors. Because the use of coupled
modes offered no clear advantage and because a valid, relatively simple yet
practical means -of incorporating nonlinear structural twist was found, a
coupled modes approach was discarded in favor of one based upon more conven-
tional uncoupled modes. Finally, in all cases the available analyses were
found to be totally incapable of providing an analysis of the structural
redundancy of the torque tube - flexbeam system or of a cantilever configured
torque'tube.

The aeroelastic analysis described hereiln is a multi-purpose computer
program characterized by rigorous modelings of nonlinear and time varying
structural twist, and of the redundant load carrying features of the bearing-
less rotor. Although developed in response to the requirements of composite
bearingless rotors, the dynamic equations are sufficiently general for wvalid
application to all conventional rotor systems: articulated, semiarticulated,
teetering and hingeless. The computer program implementing these equations
presently assumes a fixed hub, and hence, obtains solutions of the dynamie
equation'for only'one blade. It cannot, therefore, be used for teetering
rotor systems which inherently require a two-bladed implementation of these
equations. The differential equations of blade beam bending (flatwise and
edgewise) and torsion are solved using a Galerkin procedure wherein the normal
"uncoupled mode" shapes and spanwise derivatives of the blade pitch angle and
the nonlinear twist are appropriately combined to describe the "coupled" blade
deflections. The general approach to the development of the aeroelastis anal-
ysis closely parallels and draws upon that used and reported in Ref. 1. Two
types of solution are available: eigensolutions of various linearized equa-
tion sets for coupled frequency and/or stability analysis purposes, and time-
history solutions of the complete nonlinear equations for harmonic analysis
and/or transient aeroelastic response calculation purposes. The aerodynamic
description includes the use of predetermined static airfoil data, constant or
variable inflow (vorticity induced and/or momentum derived) and unsteady dynam-
ic stall data.



This document presents the more salient detalls of this aeroelastic
analysis. Specific items to be described are: 1) the principal inherent
assumptions, 2) the coordinate transformation used to introduce pitch and
twist effects, 3) application of the Galerkin procedure to obtain the basic
modal equations, 4) descriptions of the required load distributions, 5) intro-
duction of pitch-flat/edge coupling, 6) simulation of the '"wobble mode,"

7) inclusion of the redundant load carrying features of the fiexbaam-totque'
tube assembly of the bearingless rotor, and 8) the detailed statement of the
linearized equations used in the eigensolution.

These eight sections essentially present the derivation of equations of
motion whose solutions can then be implemented using a variety of numerical
techniques. In Appendix I is presented a brief description of the quadrature
techniques employed in the existing digital computer program implementation of
these equations, program G4OO. Appendix II contains a detailed description of
the input required to run this digital computer program, and Appendix III pre-
sents a comprehensive description of the computer generated outgut.
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tip loss factor, used in momentum inflow equations and in
approximate simulation of three-dimensional tip effects.
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roughness.
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section pitching moment coefficient about quarter chord.
compression at an arbitrary spanwise station.
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element of E and F matrices, respectively.

blade bending stiffness for flatwise and edgewlse bending,
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torsional transfer matrices resulting from cascade multipli-
cation and other algebraic manipulations.

qupwise angle of attgck correction factor to account for
three-dimensional tip effects.

excitation vector in time-history solution form of nonlinear
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concentrated forces epplied to the blade in the Vs and Zg
directions, respectively.
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identity matrix of dimension m.
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induced velocity gradient factor.
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spring rates of inplane and vertical retention springs,
respectlvely, of torque tube to flexbeam at snubber end of
torque tube.

spring rate of flexbeam torsion due to elastic and bifilar
effects.

spring rate of effective root torsion restraint due to control
system flexibility and flexbeam bending.

spring rate of root torsion restraint due to control system
flexibility. '

length of element of flexbeam over which torsion properties are
assumed constant nondimensionalized by flexbeam length.

length of beam element over which the tension is assumed
constant.

vector of Shears, moments, and deflections given as linear
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blade mass distribution.

reference blade mass distribution, taken to be that of the 5th
blade segment.

flatwise bending moment at an end of a beam element; also Mach
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moment due to lag damper.

blade root torsion restraint moment(
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mechanical effects.
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number of harmonics in variable inflow description.-

number of segments into which the blade is divided each having
assumed spanwise constant section properties.

section shear load distributions in directions of axes .in the
5~ coordinate system.

general expression for a response variable deflection.
element of Qpp veci;,or.

blade k'th e&gewise modal response variable.

blade i'th flatwise modal response variable.

section moment load distributions about axes in the
5- coordinate system.

blade j'th torsion modal response variable.
vector of toique tube deflection effectivity constants.

blade spanwise coordinate, measured from offset, e, in X5
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rotor radius.
intermediate torque. tube bending stiffness matrices.
element of the S, matrix.

flexbeam length (span), or flatwise shear at an end of a
beam element, as appropriate.

camponents of concentrated shear in directions of axes in the
5- coordinate system.

trigonometrically resolved torque tube bending stiffness
matrices.

element of a T matrix.
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tension at an arbitrary blade spanwise station.

constants for polynomial representation of spanwise variable
torque applied to flexbeam .

elastic transfer matrix at k'th semi-segment.

coordinate system transformation matrices relating rotating
coordinate system deflections to the inertial fiame,

elastic spanwise deflection of arbitrary spanwise coordinsate.

resultant air velocity relative to blade section, WkU?2+UT2)‘

air velocity component relative to blade section in (+) z5
direction.

air velocity component relative to blade section in (-) Y
direction. 2

air velocity component relative to blade section in (+) xé
direction.

elastic edgewise and flatwise bending deflectiohs, respectively,
of an arbitrary spanwise coordinate.

zeroth and n'th cosine and sine components of variable induced
velocities.

components of air velocities relative to blade section devoid
of cosine and/or sine of total pitch angle and comprised of
response variables.

components of air velocities relative to a blade section in
chordwise and thicknesswise directions, respectively.

deflection correction terms due to first order twist effects.

strain energy.

deflection correction terms. due to second order twist effects.
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components of the 2-coordinate system, defined to be affixed to
the rotating hub.

components of the 5-coordinate system, defined to be rotating
with the hub, but at the blade coned and legged position.

length of blade spanwise segment over which the spanwise
properties are assumed to be constant. /

components of blade deflection in the inertial and 5-coordinate

systems, respectively, as measured in the 5-coordinate system.
|

chordwise and thicknesswise position coordinate; respectively,
of an arbitrary point within a blade section.

inplane and out-of-plane position coordinates, respectively, of
an arbitrary point within a blade section.

chordwise distances of quarter chord, three quarter chord, and
mass center, respectively, from the reference axis at a blade
section.

subvectors of {A} s having specified deflections in y and =z
directions, respectively.

deflection in z. direction of the push-rod attachment point
due to any and all blade bending deflections, flapping and
lead-lagging, with the push-rod disconnected.

flatwise (vertical) deflection per unit force of inboard end

‘of cantilevered torque tube, due to flexbeam bending

effective blade section angle of attack approximately corrected
for three-dimensional tip effects and used for evaluation of
section aerodynamic coefficients.

quasi-static blade section angle of attack.
rotor (hub axis) angle of attack.
blade flapping (or precone) angle; also used to denote tension

(or compression) to elastic bending stiffness parameter for
a beam element.
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dgflection mode shape for the.k'th edgewise normal mode.

deflection mode shape for the i'th flatwise normsl mode.

‘deflection mode shape for the j'th torsion normal mode.

deflection shape for the pseudo- (rigid body) torsion mode.
bifilar-twist coupling function for j'th torsion mode.

blade lead angle; also used to denote perturbational quentity.
vector of specified deflections.

smell number (less than unity) used to assess relative orders
of magnitude for various terms.

flexbeam spanwise coordinate, measured from offset,
nondimensionalized by S.

spanwise coordinate of boundary point between k'th and k+l1l'th
segments.

built-in blade section twist angle; i.e., that section pitch
angle resulting when the aerodynamic pitch angle at 75% span .
is zero deg.

built-in twist angle of flexbeam measured when flexbeam is
torsionally unloaded.

elastic torsion deflection angle.

blade root torsion deflection angle,

abbreviated torsion flexibilitv coefficients containing
deflectiop.dependency.

blade tip torsion deflection angle.
automatic blade pitch change per unit deflection in k'th

edgewise mode, i'th flatwise mode, flapping and lead-lagging
motions, respectively.
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blade pitch dngle due to inpﬁ% control angle.

automatic pitch changes accruing from any and all blade
bending deflection, flapping and lead-lagging.

itotal local blade pitch angle.

flexbeam = torsion flexibility coefficients.

total torsion deflection of flexbeam. at junction point beyond
built-in value.

blade section pitch damping effectivity factor.

total inflow ratio, or section torsional characteristic constant,
as appropriate.

uniform portion of inflow.

inflow contribution from forward flight "ram" effects.
advance ratio.

Polsson's ratio.

air density.

inflow angle.

blade azimuthal (angular) position.

(nondimensional) frequency used in quadrature formulae, taken
to be uncoupled natural frequency of degree of freedom.

(nondimensional) uncoupled natural frequencies of i'th flatwise
bending mode, k'th edgewise bending mode and j'th torsion mode,
respectively.

rotor rotational frequency.
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effects of aerodynamic origin.

structurally built-in parameter, or conditions of blade
immediately outboard of juncture.

effects of dynamic origin.

due to elastic deformation.

in edgewise (section major principal axis) direction.
in flatwise (section minor principal axis) direction.
flexbeam .

effects of gravitational origin.

conditions at inboard end.

conditions at flexbeam-torgue tube juncture.
conditions at outboard end.

push-rod.

conditions at the inboard end of the torsionally active
portion of the blade.

conditions at snubber (inboard end of torque tube).

torque tube.

nondimensionalization by combinations of m , R and/or Q.
differentiation with respect to (Qt).

differentiation with respect to (r/R).
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pertains to loads arising from“deflections.

pertains to loads arising directly from push-rod load.:

- pertains to first and second parts of definitions of

deflection correction terms, respectively.

to be evaluated at a specified point minus or plus an
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15



.16

PRINCIPAL ASSUMPTIONS

The principal assumptions used to derive the basié differential equation

of motion are as follows:

1. .
) impedance, and is in steady translational flight.

The rotor is rotating at a constant angular velocity, has infinite hub

The blade elasticity is adequately described bﬁ the conventional (linear)
beam bending and bar torsion characteristics described in Ref. 4. Al-
though the effects of the additional section constants B, and B2 described
therein are usually considered to be negligible for helicopter applica-
tions, they are potentlally important for accurately analyzing solid
sectional, highly twisted propeller blades_and/or wind turbines. To pre-
serve consistency with the rigor applied to other aspects of structural
twist and to achieve universality witq such nonhelicopter rotor systems,
these elastic section constants are retained in the full nonlinear formu-
lation given in Ref. L.

The elastic (torsion) axis of the undeflected blade is a straight'line.

-However, when deflected in bending, the elastic axis defines a space

curve about which the local torsion deflections must take place.

The blade aerodynamic and structural twist distributions are nonlinear;
additionally the structural twist of the flexbeam (bearingless rotor
applications only) is time variable.

The total (integrated) angle of structural twist is negligible beyond
second order; cases of large local twist rates over short sections of
span are not denied, however. See section on coordinate system for more
details.

Radial foreshortening of blade elements due solely to elastic deflections,
in the absence of precone (or flapping), and prelag (or lagging) is ade-
quately represented by a second order functionof flatwise bending.

The feathering axis is coincident with the elastic axis of the elastically
undeformed blade.

The blade distributions of center of gravity, aerodynamic center and
center of tension (intersection of flatwise and edgewise neutral axes)
are, in general, noncoincident with the elastic axis.



lo L]

The blade sections have finite thicknesswise mass, but the thicknesswise
displacements of the section center-of-gravity away from the chordwise
principal axis is negligible.

While assumptions regarding the smallness of various quantities and
products of these quantities are not generally required for the imple-

" mentation of time-history solutions of the full nonlinear equations, they

are required for effecting consistent linearized approximeations for the
elgensolutions. For this case, coefficlients of the perturbational vari-
ables, whose orders of magnitude exceed €2 are neglected. Here ¢ is an -
unspecified small number less than unity and where the assumed orders of
magnitude of the various pertinent quantities, as measured by e, are
given in Table I. ' oo

17
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COORDINATE TRANSFORMATIONS DUE TO PITCH ANGLE AND TWIST

The aeroelastic analysis i1s a modal type analysis which uses, as its
basic description of the elastic deflections, hereafter called primitive modes,
the normal vibration modes calculated assuming the blade to have zero coning,
pitch angle and twist. These modes are sometimes referred to as "uncoupled"
modes. Thus, the resulting aseroelastic bending responses, as ultimately
coupled by coning, pitch angle, twist, aerodynamics, ete., must be interpreted
as flatwlise and edgewlse responses rather than out-of-plane and inplane re-
sponses. The basic advantage claimed for this choice of primitive modes over
those approprlate to a blade already twisted and pitched at some nominal angle,
which are sometimes referred to as "coupled" modes, is the convenience of usage
especially for bearingless rotor applications. A single set of uncoupled
primitive modes needs to be calculated for any one rotor speed and 1s adequate
for all subsequent twist and pitch angle combinations. The purpose of this
section, therefore, is to deseribe the introduction of pitch angle and twist
using uncoupled normal modes as the set of primitive modes.

The basic blade coordinate system used herein and referred to as the "5"
coordinate system consists of the elastically undeflected blade at the flapped
(or preconed), lagged (or prelagged) position. See Ref. 1 for a detailed dis-
cussion of the coordinate transformations preceding this. As shown below in
Fig. 2, the x5-axis is out the span from the blade root or offset point, as
appropriate; the y-~axis is parallel to the hub plane and positive forward,
while the Zg ~axis gs perpendicular to Xg and Y5 and positive upward, but not
generally parallel with the spin axis.

As is discussed above, the local elastic deformations (nondimensionalized

by rotor radius, R) consist of finitg series summations of normal bending
modes in the flatwise and edgewise directions:

NFM

R 22 % (N3, (1) | @)
izl 1 |
NEM
=27, (Mg, (H (2)
k=! k k



BLADE ROOTOR
OFFSET POINT —

Figure 2.~ Schematic of the "5" Coordinate System.

In the presence of only blade pitch angle the resulting deflections in
the "5" coordinate system are simple trigonometric transformations of these
flatwise and edgewise contributions. The effect of twist, however, is to
require an "integrated" trigonometric transformation. This integrated effect
can be achieved by means of, first, a direct trigonometric transformstion not

on deflection, but upon second (nondimensional) spanwise derivatives of the
Jeflections:

¥, = Ve COS® - W, sin® (3)
_” ” ”
Z5 = V, Sin® + W, cos® ()
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This coordinate system transformation has the advantage that the "force"”
boundary conditions at the tip of the blade in the "S5" coordinate system are
alweys satisfied. Equations (3) and (4) and their first spanwise derivatives
taken together with the boundary conditions imposed on Yw and ¥,, given in
Eqs. (1) and (2) are sufficient for this result. Egs. (3 and (VE can then be
integrated by parts to give the fundamental deflection coordinate transforms-
tion used throughout the GUOO aerocelastic analysis. This transformation
becomes the usual trigonometric transformation on deflections given in Refs. 1,
4 and elsewhere in the literature, but with the addition of various deflection
correction terms due to twist:

Vs = (Vo+ Av - AV) COS® - (We-Aw-Aw)sin®+o(®'3) (5)

Zg = (Y +Av-AV)sin® + (W—Aw- Aw)cos®+0(®) (6)

where the underlined terms are, by assumption, negligible, and where the
deflection correction terms are given by the following:

first order in twist:

4 ’ - 4 ?' U4 ’ ’ - -
av=[ [ &7, o +[[eu, —7woi)dr2dr|]qwi (7)
= (Av m+ /.\v(a))qW = Av,Qy
P N
Aw = [f@)’ dr, _/(;j;)@ -Yvok)dradrl]qvk (8)
()] )
-(AW +Awk( )qV -Aqu



second order in twist:

7 7T ., _ . L
1 oraw de S C g -
av: [ [@nu,dr + [ [ @awdrdr]a,, O
caull) f Ay @y | :
= (Avk_ + 4V, )qvk- Avkq\,k _ \

fi

| ’
BAv

-l

(2)
i

AW = [ '{; F@'AvidfI + 'drad?l] Q, (10)

00

m (2 -
+ AW, )qWi z AwiqWi

= (AW

It is to be noted that the total (nondimensional) twist rate, 8’,contains
the built-in twist, eé , the twist due to control inputs, eé , and the time
dependent elastic deflection, Bé (= Yb Qg Y. Thus, the deflection correc-
tion terms, 4v, Aw, AV and AW, nominally contain nonlinear products of 293
with either qwi and/or Qy, - Herein, however, the products qg, - qwi and
Qg. * Qy, 8are retained only in the Av and Aw (first order) correction terms and '
defloted as Av, and Aw, respectively; the AV a?d AW (second order) correction
terms retain only the built-in twist rate, OB , and that due to control inputs,
8' , in accordance with the assumed relative order-of-magnitudes given in W
Table I.

To complete this section, a physical interpretationof the above formulated
coordinate transformation is presented by considering the following argument:
Let a uniformly twisted blade possessing only flatwise flexibility be uniformly
bent (in only the flatwise sense) over its span by continuously taking small
bends at points outward along the span starting at the root, as shown in
Fig. 3 below. Then, with each such small bend, the deflection locus of the
blade tip, point P, is traced to its final deflected position, point P'. The
initial part of the locus must be in a direction normal to the blade root
chord since the initial flatwise bend 1s defined to be normal to the blade
root chord. Similarly, the final part of the locus must be in a direction
normel to the blade tip chord since the final flatwise bend is defined normal
to the blade tip chord. Thus, the locus must define a curved path (arc PP'),
as shown. In contrast, using the straight trigonometric transformation on the
flatwise deflection, wg, together with the pitch angle at the tip, 6p, the
blade tip would be predicted to be at point P", where the flatwise deflection
equals both the PP" and the arc length PP'. The figure clearly shows that the

o1
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‘ HUB

CONSECUTIVE SMALL '

FLATWISE BENDS

LOCUS OF BLADE TIP DEFLECTIONS

1
" DEFLECTED TIP / ‘ ”
SECTION
P
POSITION /| Z -
=z = - 'INITIAL BLADE TIP SECTION POSITION

Figure 3.~ Illustration of the Physical Significance of the Deflection
Correction Terms Resulting from Assumed Coordinate Transformation.

straight trigonometric transformation will yield the actual deflection only if
the chordwise and thicknesswise corrections, QP' and QP", respectively, are
added to the trigonometric transformation:



Ys = (QP) cos 8, - (PP"-QP")sing,

- 25 = (QP) sin8; + (PP QP”) cosb;

which reduce to Eqs. (5) and (6) where PP" is given by We and where QP’ and

QP" are, respectively, approximated by Av and AW.
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DERIVATION OF BASIC DYNAMIC EQUATIONS OF MOTION

Flatwise and Edgewise Bending Equations

The differentlal equations of blade bending are obtained by equilibrating
the flatwise and edgewise moments at arbitrary span locations. Reference to
Fig. 2 and the principal assumptions leads to the following moment eqguilibrium

equations:
Elywg = -My Cos® -M, sin® (11)
L ' - / + | ot = - i 12
ET,vg - €qT ~EB, (8} 364)6 = Mz,C05® My,sin® (12)

. Application of the Galerkin technique requires that the equilibrium
equations be in the form of loading equations; hence, Egs. (11) and (12) must
first be doubly differentiated. A method of performing this double differen-
tiation which maintains equation compactness is given below. The first differ-
entiation ylelds the following equations:

flatwise bending:

[erwe] +8 [ E,vg- e -8, CRTALYE -[My cos® + My sin@]  (13)

edgewise bending:

[EIzvé'- e,T —EB, (gé +-'zeé) 9(';]’- [@'Elyw'é] z [M’zscos® - M'yssin®] (14)

2L



where the derivatives of the applied moments, M§5 and M£5 are expressible as:

R ' o
My;[ P2 dn—2sT-qy, o | (15)

, R _ o _ o
M25=-[ pysdr|+yéT—qzs | N - .. (16)

and where the tension is givén'by:

R - . '
T=[ D,‘!’drl | (17)

The applied force loading distributions, py. and p,., and the applied moment
loading distributions Ay and q,_, 2ll include not only the inertia and aero-
dynamic contributions bug any logds due to mechsnical loads spplled by push-
rods, dampers, etc. The second differentiation of the moment equilibrium
equations is performed after first resolving Eqs. (13) and (14) to isolate
M§5 and Mész

-My, = {[e1ve-e~e8, CRELALAR 8E1,wy |sin®

, , (18)
+ [(EIyw'e') +8/(EIvg-e,T ~EB, (gé + 3'_;9;) 6. )] cos @} = (RHS),,
Mg {[e1,9-e7 - €8, CRETALAR ®k1,w;| cos® o

-[te1 wey + B(ELV5-e,T -8, (6+ 36:)6 )] sin @}' = (RHS),

Application of the Galerkin technique requires consideration of the work
due to virtual displacements of the bending modes. It must be noted, however,
as was shown in the preceding subsection, that in the presence of twist, flat-
wise and edgewise modal displacements each generate deflections in both the
flatwise and edgewise directiong. Hence, the proper formal application of the
Galerkin technique is to integrate the inner products of loadings and virtual
displacements:
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./;R{_(zs)wi[M;;(RHS)w] + (ys)wi[M’z’s— (RHs), | }dr = o (20)
k'th edgewise modal equation:
‘/(;R{'(Zs)vk[M;5+(RHS)W] M (yf’)"k[M,z,s"(R‘-'S)"]}dr =0 (1)

The quantities (RHS)w and (RHS)V, as defined by Egs. (18) and (19), involve
differentiated combinations of twist and cosine and sine of the pitch angle
and elastic restoring moment. Although not immediately obvious, the integrals
of these (RHS) quantities with the components of deflection, as given by

Eqs. (5) and (6), can be evaluated, using integration by parts, to yield the
following simplified forms:

R R ”
‘é‘ [(Zs)wi(RHS)w+ (Ys)wi(RHS)v]dr = _/c; VWiEIyWedf (22)

| '(/; R[(zs)vk(RHS)w+(ys)vk(RHS)v]dr _é Ryv'; €1, | v¢- e ~ €8, (9,’,+%e;)e,’,]dr (23)

The desired basic bending modal excitation equations can then be written by
combining the results of Egs. (5), (6), (15), (16), (20), (21), (22) and (23).
Hereafter all quantities and equations will be written in nondimensional form
(without overbars) where the nondimensionalization is accomplished using appro-
priate combinations of R, ( and mg:



i
_[; {-(Ywi- Awi)(9025cos® ~Ppy,Sin @) - av( ppzssm® + prscosGD)
+ 7[00 - AW (we- 2w AW @) + Ay + av2]
1

’ 2 ’ . f R » »
+ ()’wi-Awi( ))(q0y5°°s® + quss'" |)- Avi(z)(qnz :os@ - qnyssm®) + 7’.“iEI‘,we dr

[

+ l[( il g Oy = Dy, ) Mzs] (24)

!
{(rw| BW)(Py, COS® - py SiN®) +A(P,, SO + py, COSE) -YWiquscosG} dr

k'th edgewise bending equation:

I
j;{-(n-AVk)(pD sin® + pD cos@) +Awk(p015cos® - poyssin®)

@ Av¢®) - aw@wg - 2w

+ o -ay 2))(ve+Av
- —Av‘a’)(q cos®-q,_sin®)-aw?(q, cos® +q, sin®)
Vi k TADg Dy, k oy QD25

+ 7 ELG- T - €8, (61 +562) €6 1} ar

f{()’ Av)(pA sm@ +pA cos@) AW, (pA oos@ ~Pay snn@)}dr

+E [(zs(rm))ka +(ys(r,,,))v Fyg,~ @lm)y My sty Mzg ] - (e5)
ms=1
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. The subscripts A and D denote terms of aerodynamic and dynamie origin,
respectively, and the finite summations over m represent the modal excitations
due to a finite number of concentrated forces and moments.
Torsion Equation
In a development similar to that glven above, the differential equation
for torsion is obtained by first equilibrating the blade torsional moment. In

Ref. 5 1s derived the torsional equilibrium equation for the blade, consistent
with the assumption of a space curve torsional axis:

6u6, + BT+ LB, (87 -6) @' -EB,6hv,
( ' _ .
= /r‘ {[‘zs,‘ Z5)Yg ~ (Ys,‘ys)lfr,] Pxglr) ~ [(25,"7-5)'_('1 ")25] Pyg (1) (26)

+[05,39) - (1-Nye] Paglr) +axg ) +¥5ay,(0) + 250, (1)} dn

where ysl and zsl are the inplane and out-of-plane deflections evaluated at ry.

Differentiation of this equation yields an intermediate form of the
required torsion loading equation:

4 2, ) 2 2 " ’ V4 4
[cug;+ @K2T+5eB, (0°-65) & ~€8,l60v, | = -ay - ANEA

o
+yg, j: [(25'—25) Pxgl) ~ (r Mg (r) + qys(" )] dr, (27)

]
- 25 (005, 990P, (0~ 5,-1)py, () = @ (]l
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Integration by parts ylelds a second intermediate form:

/ { 7 o2 2\ T , -,
[cuge+ @i + 18, (67~ 65 )@ ~E8, 6% ] = ~ay- Y59y, 2592,
| l Al ]
+y;jr' [zfr,lj: p"s(ra)d"a‘jr‘lpzs("z)dra'*'st(f.)]dr, (28)
l B
”. ! , l ! o :
-2 f [Yslf D,(s(rz.)dr2 —f Pylrz)dr, ~q, (r, )] dn,
. T i f 5 5

which, when combined with Egqs. (15), (16), and (17), with (11) and (12), and
finally with (3) and (4) yields the final desired form of the loading equation:

[e J8,+ @KET+%EB, (o’z - 9;2) @'~ EB,0, v, ] f29)

-[ter-E1) vewg- (e + £8, (6, +L0%) 8a)wg] = ~Qeg Y50y, Z 2,

Application of the Galerkin technique to this equation then follows in a
straightforward manner to give the following basic form of the J'th torsion
modal excitation equation:

.
j; {7;91_ [—qu5— yquy; z'5q025+ (EI,- EIy)vgwé’-(eAT+EBZ(8'.+-5-6'e)9;)wg]
+%, [606,+@IGT + S8, (0°-6L) 0/~ 8,05, }ar (30)

! M :
= Y q, dr + ) 7 (rpIMy, .
‘{; % "Axs mZ=| 8 " m

where, again, the summation over m represents the effect of concentrated torsion
loads on the torsion modal excitation.
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Rigid Flapping and Iagging Equations

The equations of motion for rigid flapping and lagging are obtained by
equilibrating the moments about the articulation hinge about the 5 and Zg
axes, respectively:

rigid flapping:

5m

| : M
_{;(rpzs—zspxs— qys)dr +mE=l(rsz —My5 ) =0 (31)

rigid legging:

f

M
- = 2
(rpys ypr5+ qzs)df + MLD+"§|(r’“FV5m+ Mzsm) =0 (32)

where MLD is the root moment due to the lag damper and is typically proportional
to blade root angular rate:

M

§+ 30 (33)

LD _CLD[

with C as the familiar linear damping rate of the damper. Note that as per
Eq. (5§Dthe (nondimensional) time derivative of elastic in-plane slope will
generally contain contributions proportional to flatwise and edgewise modal
deflection and to flatwise, edgewise and torsion modal rates.

The equations of motion presented above for the bending and torsion modes
and for rigid flapping and lagging ((24), (25), (30), (31), and (32), respec-
tively) are complete only in so far as the load distributions are (explicitly
or implicitly) available. The following section presents implicit statements



of the loading in terms of the blade deflections, as formulated in the
following section. Furthermare, these equations are basic required forms of
the aeroelastic responée excitation equations from which, together with appro-

" priate expressions for the load distributions, a set of linearized equations
can be expanded for eigensolutions, or a set of nonlinear equations of the
form:

[a]{d} - {rw} (34)

can be written for'time—history solutions. The A matrix above consists of the
coefficients of the second derivatives of the modal responses and represent
terms extracted from the compact expressions for dynamic load distribution.
This matrix is also discussed more fully in the following section.
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DYNAMIC AND AERODYNAMIC LOAD DISTRIBUTIONS

The load distribution a.ppear?:ng in the above derived dyna.mlc equations for
the response variables were expressed only J.mpllcltly for two reasons: first,
because it simplifies the explanation of the application of the Galerkin tech-
nique and second, because completely expanded, explicit, expressions for the
loadings are tedious, cumbersome and not actually required for the more impor-
tant time-history solution. Complete linearized expansions of the loadings
are ‘-required, however, for a formulation of the linearized equations used in
the eigensolution.

Dynamic Load Distributions

The usual-approach of using D'ATembert 's principle to express the inertial
acceleration of the distributed blade mass as an equivalently spplied. dynamic
load distribution is followed herein. The position vector of a point mass
particle, with a chordwise and thicknesswise displacement relative to the "5"
coordinate system, is written as follows:

r+Ug =Y, ¥5C08 @ + Z5sin®) - 2,,(25C0s @ - ¥sin B)
{Xs} = ¥s + xocos® -z,osin®

Zg +Y,,Sin® +2,,cos® (35)

vhere yy4 and z,, are, respectively, the (forward) chordwise and (upward)
thicknesswise locations of the point mass from the reference, X5, axis, and
where the axial deflection due to elastic flatwise bending is given by the
following expression:

b bRl fy'iy;,mdr]q,iqwn; (36)

The displacement of the point mass particle relative to the imertial
frame is obtained by means of four consecutive coordinate transformations and
is written in the following compact form:



b E|{) e
where the four coordinate ti‘ansfom_a.tions_, described in detall in Ref. 1, in
consecutive order, account for rotor rotation, blade root offset, lead-lag
rotation about the (articulation) hinge or offset point, and flapwise rota-
tion also about' the offset point: :

cosy -siny .o )
[ ] (38a)

[T,] = |sing cosy O
o] 0] |
[ cosd  -sind 0]
Ta | = | sind § O
JN N (380)
cosB O -sinf (38¢c)
sin@ O cosf

Upon letting:

[7s] = [0 ][ ][] | (362)

the inertial acceleration of the point blade element can be written as:

IR IO ICARE IV S S
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where the details of forming the indicated differentiations and matrix
miltiplications are omitted herein for clarity. The dynamic force load dis-
tributions are formed as follows:

So,
=-f [ean{X} | (w0
S blade
ou) S

whose components are formed by using Eq. (39) and can be written as:

pD"5= m{e+r(|+2§—32)+2§5+ue—325} (k1a)

%% *
poy = “m{ed +r(8-285) +1; +2(le-BE-Azg) -u+2Dy,

+y,oc [ 2(Ve"Av(2)+A (2)) (l+2§+® +ZB®)COS® (5"'25)5“18]} (41b)

P, = - {eﬁ +r(B+p+ 2B§)+*z';+ 2B§5+ylocs[8cos®— (é2+2[35)sin®]} (klc)

The dynamic moment load distributions are similarly formed:

g D"s ZIO Ylo
blade

qu section o © o
5 ared

where the chordwise and thicknesswise integration variables resolved into the
"5" coordinate system are given by:
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Yo = ¥0COS® ~2,oSin@ (43a)

30 = %oSin® +2,5c0s@ (43b)

The components Qf the moment load distributions can then be written as:

Apy = M <y‘°ce{ [eB+r(?+B+ZB§) +*z';+28§5]cos®
—[88 +r(3-285) +’§;;2(ﬁe +B'z'5+[§zs)—(|+2§)y5]sin®}
+k$|o{g+2§cosa® —(1+28-8%) sin@cos®
r2(% - a2 A%? cose} (4ka)
+2_{B+285in20 + 1+28- 57)sin@cos®

+2(V - Ac(2)+Ac(2))sin®}>

qoy; -m <“Y|QCG{e+r(I+2§—,82)+2'y'5+ ue—st} sin®
. » , ( )' (2)1 -
+ kslo{(l+28)[we—AW 2o Aw +Bcos®] |
+2§ [(-l+§)cos® +§sin®]}cos® (44b)

+i2 {u+2d) [v2- av@s A+ sin®)
+ 2(5 [( | +§) sin® —,écos@]} sin®>
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Qp, =-m <y,ocs{e+r (l+25-Bz)+2§5+ ue—st}cos®

+k$lo{(l+2§)[w;—Aw(2y- w(2)'+,6cps®] .

g

+ 25[(1 +8)cos® +§sin®]} sin®
- 0{(|+.2§)[v,',-av‘2"+ avZ+ @sin®)]

, (4ke)
428 [(I +8) sine-A cos@]} cos®>

where ¥y ’ k-YlO and kZlO are, respectively, the chordwise mass center and
the thicknesswise and chordwise mass radii of gyration.

Por both the eigensolution and the time history solution, those dynamic
load terms containing second time derivatives must be extracted to form the
inertia coupling matrix, [A], indicated in equation (34). Using the load
distributions given above, the elements of this matrix can be conveniently
written using the following partitioned representation of the A matrix:

A‘”iwm A“'i"k Awigj A“'iB Awia

A Avm Pvg Pus Aus
Al= | A A A
[ ] ow  fovc Poom Ao Ao

Agw. gy, Pps, fee O

Asw, sy, Pee O Am (45)
where:
I
Aww ® _£ (7= W)V = W) + B, By (462)
|
Awiv, = Avw, ° 4 m[(Yvk-AVk)Avi-(Ywi-Awi)Awk]dr (46b)
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' (u6e)

\
k3] | - ) - DOV :(Y 'AVV) qvlml
ALY AW N, AN i, D) BV
oy 'X } (u68)
NEM WAL
= ) +Aw Aw ’. N
?,3\\70-‘”%‘”\‘ sz T EREMEG
(hen)
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A = [ - Aw,)di -
%wi 'émy'occ)bj(y“'i Aw;dr (469)

I
A =
0% _é myloce)éj Aw, dr (Lbk)
[ (v61)
A, p=RApgg = m ry cos@dr 1
058 Bol o yIOCG Gj
‘ .
g5 = A " .j; o0, SiN@dr (46m).
|
Agg = Ass '-n_{: mr2dr (46n)

Aerodynamic Load Distributions

The aerodynamic load distribubtions used in the analysis are assumed to be
two dimensional and the usual strip-theory techniques as typically described
in Ref. 1 are therefore employed. More specifically, at each spanwise station
the two-dimensional airfoil section angle-of-attack is calculated based upon

section geometric pitch angle, ® , and inflow angle, ¢, based upon airflow
velocities at the 3/4 chord point:

U
ags= ®+¢ = O+iari (U'—:-) (u7)
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where:

W] 2 2 , .
n—% =X (' - BT) ~ Ux [Zé (' - %—) + B]-i_; 7 -y,o%(@+®ux)cos® (48)
2 2
%} = € +,usin(lll+8) +r (I - BT) + Ux¥é(" BT)

, by
+ ¥+ 8 —ylo3c(é+®ux) sin® (49)
w3
where the radial vélocity component is given by:
Ux | +8) + cos® 0
o = pcos(¥+3) Yiosc (50)

)

and where the derivatives of the "5" coordinate elastic deflections are obtain-
ed from appropriate differentiation of Egqs. (5) and (6). The total rotor
inflow, A(r,{¥ ), is comprised of a "ram" portion due to forward flight and a
(harmonic) induced velocity portion which is assumed to be, in general, both
radially and azimuthally varisable:

NH .
AW = Agam - vio(r) —§ [vinc(r)cosmp + vins(r)smnw] (51)
where:-
Vi oo _
Aram = g Sinag = ptanag (52)

Equation (51) represents a completely general description of the harmonic
rotor inflow. Regardless of how the induced velocity components are obtained,
either experimentally or analytically, they are.acquted by the analysis as
an envirommental excitation and used directly as per Eq. (48).

Two specific, optional assumptions which can be made on the induced
velocity are as follows: v
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a. imifom inflow:

Cy
vio(r) = ZBW -. (532)
'nc= vins.= 0; n=12,..., NH (53b)

'+ b. generalized Glauert (momentum):

v, (r) = vy (uniform) (54a)
o
Yi, 1) = rlyet Kyvo) | (54p)
Vi, T = rvis (5ke)
v. (N=v (=0 n=23,..,NH (54d)
nc Ins
where:
Ao = Aram~ Vo (Ske)

The nonzero (zeroth and first harmonic) components of induced velocity can
then be related to rotor steady thrust and hub moments using momentum consi-

" derations:

Ao

Cr Y
ul+ Vo = 2
Bge 2 X o 2+X2 (VIC+V )
A H T Ao

(55a)
Cm _ (H2N5-2ov0) (
= T —— = b
B® 2 /,u_z +)‘_% ic | 55b)

Cs (/-‘2+>‘2—)‘0Vo) (55¢)

=l
3 /2 2 1S
The Glauwert induced velocity gra.dlent factor, K,, in Eq. (54b) is used to
account for the strong cosine component of inflow present even for zero pitching



moment. The approximation to K, used herein is that given in Ref. 6 based

upon results of Ref. 7:
- au
Kv= 3% Dol +31 (56)

The formulations given above for the local velocities together with Egq.
(47) is sufficient to define a quasi-static two-dimensional angle-of-attack.
Approximate three-dimensional tip effects are introduced by multiplying this
quasi-static angle-of-attack by a function which is unity over most of the
blade, but reduces abruptly to zero at the blade tip: .

! y O<r<2B-I

f, =
a 2
_ 1 [r=28+
\/ 4( 5 ) i 2B-1<rs

where B is the conventional tip loss factor.

(57a)

The effective angle-of-attack used to calculate aerodynamic coefficients
is then given by: ,

yis
0« |fa%s . ol s
¢ faQqs+Sanlagsli-fg) s lagl > 5 (57b)

The Mach number at the airfoil section is given simply by the following

expression:

M= g = o=,/ Ug+u2 (58)

From the effective angle-of-attack and Mach number, the following expres-
sions for (nondimensional) aerodynamic load distributions can be formed:
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L2

2
on, = (22 ety =g (590
2 _
pAz5: -é_(%lio_) CU(CLUT+ CdUP) (59p)
_ - - L (PR 2 _m %
qAXS- V|oc,4(qA25°°5® qussnn®)+ T (m—o)c U[Ucmc/4 2 CKAx5®] (59¢)

where:
Cp= Cylagss, M) (602.)
Cy = C4{@egf M) + Ay, (60b)
CmC/4 = Cmc/4(aeff’ M) (600)
T
i l—2yloc/4/C§ |aqs| £ 3 ¢
Ka, . (604)
5 2Y0g /¢ 3 1%sl > 5
Acdo = incremental drag coefficient introduced to account for surface rough-
ness.

The dynamic equations given in the previous subsection together with the
load distributions presented above are sufficient to complete the basic aero-
elastic analysis of the rotor blade. Such a basic analysis, however, omits
the effects of pitch-flat/edge coupling. The following subsection includes a
unified method for including such coupling.



RIGID BODY FEATHERING MOTION AND

BASIC PITCH-FLAT/EDGE COUPLING EFFECTS

The simulations of the rigid body feathering motion (if present) and the
sutomatic blade pitch changes accruing from elastic bending deflections and/or
flapping and lagging motions are both accomplished by the introduction of a
torsional "pseudo'-mode. Such a mode is no more than the rigid body feather-
ing motion of the blade as would be generated by & control input. Operation-
ally, this "pseudo'-mode is treated in the analysis as a spanwise variable
mode shape in addition to the conventional normal torsion modes used to
describe the blade torsion. 1In genersl, this mode has a unit value over the
blade span except, for analyses of the bearingless rotor, over the flexbeam -
torque tube portion of the blade wherein the spanwise elastic torsion deflec-
tion of the flexbeam (due to & control input) is used. Reference to Fig. U
shows the pertinent features of this pseudo-mode, especially as it is applied
to bearingless rotors:

/////____OFFSET(HUB) FLEXBEAM — TORQUE TUBE JUNCTION
— FLEX BEAM .
SPAN INERTIALLY AND AERODYNAMICALLY
EFFECTIVE PORTIONS OF MODE
o
1.0 ‘_ - /
. ROD—LIKE
=
0 TORSION ALTERNATE FORMS OF
ﬁ? | ELASTICALLY EFFECTIVE
i PORTION OF MODE
PLATE—LIKE
Torsion |
[}
0 -1 —
0 rJ 1.0

NONDIMENSIONAL SPAN, T

Figure 4. - Details of (Rigid Body) Torsion Pseudo Mode.



Note that the elastically effective portion of the pseudo-mode can,
optionally, be taken to be & linear function typical of rod-like torsion or
an ogee function more typical of plate-like torsion. Finally, it should be
stressed that this pseudo-mode is not, in general orthogonal to the blade
normal modes in torsion.

For bearingless rotor applications, the pseudo-torsion mode serves the
unique function of providing a convenient way of introducing time-variable
structural twist (i.e., due to control inputs) into the analysis. By treating
this component of twist as but an additional torsion mode proportional to con-
trol input, the following expression for total pitch angle can be written:

NTM
® = 2‘1 7quoi+7énaeo+es (612)

—

Similarly, the total twist rate can be written as:
T |

®\
4
-
Z

q0+)5 5 +6 ' (61b)

[

By using this expression for twist rate, together with the appropriate
pseudo-mode, the incremental deflection functions, Av, Aw, AV and AW described
in an above subsection, can be completely formulated.

The pseudo-torsion mode serves two additional functions common to all
types of rotors: First, it provides a convenient way to include a rigid-body
torsion degree-of-freedom arising from root torsion restraint (control system)
flexibility and second, it enables the effects of pitch-flat/edge coupling to
be systematically introduced.

Rigid-Body Feathering Degree-of-Freedom

For this purpose the total pitch angle now includes the root feathering
angle, OR, and is expressible as:

NTM. NTM+|
8 =2 Qo +)b (9 +6, )+eB = Z 7&% )é eo+ea (62a)
j= =



where:

(62b)

)
]
X .
IIQ
m .

)/
NTM+1t

q 8,, (root torsion defléction) ' | (62¢c)
OnTM+1 R )

A separate rigid-body torsion equation is written by a generalized appli-
cation of the Galerkin technique wherein the torsion equation is multiplied by
the pseudo-mode and integrated; this effectively calculates the torsion moment
resisted by the equivalent elastic root torsion spring, Kezz

|
[ 79,5 distributed torsion loading]dr = K [ 8+ 8+ %.(1,) ag.+ B (1] (63a)
° | i

(GJ)gg
- —— +

where:

2
Kg, = torsional stiffness of flex-beam = [(GJ),_-B + TkAFB] / Ses (63b)

Kazs equivalent root torsion spring due to control system flexibility, etc.

In addition to incorporating Eq. (63a) into the total set of dynamic
equations, additional terms must be added to the equations for the j normal
torsion modes:

45



fl‘)(g [dlstrlbuted tor‘s.lon Ioadlng] f 7{9 qAx dr

(GU)eg :
+ )bj(f:l){Kai [9°+QR+)g,m(rJ)qom+ BB((,)] gl QB-FB (64)

Furthermore, appropriate 6y (and time derivative) terms must be added to the
load distributions (wherever ® dependent terms appear).

Inclusion of Pitch-Flat/Edge Coupling

Automatic pitch change coupling effects can also be conveniently included
in the eﬁuations of motion by use of the pseudo-torsion mode. First, however,
the kinematics of the push-rod to blade attachment point must be considered.
Iet Az be the upward "5" coordinate system displacement of this attachment
point due to blade deflections with the push-rod momenterily disconnected.
These deflections are shown in Fig. 5 for a blade section at the attachment
point station:

| Zg

“ — DEFLECTED POSITION WITH
PUSH "ROD DETACHED

FINAL POSITION WITH
PUSH-ROD REATTACHED

az

0°PR \
=Yg

UNDEFLECTED
— POSITION

Figure 5.- Geometric Features of Automatic Pitch Change
"due to Blade Deflection.
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. When the push-rod is reattached, so that the attachment point is restored
to its original z5 position, the blade will have rotated through an incremental
pitch angle (-A® as shown in the figure). Using simple trigonometry the fol-
lowing equation governing A6 and Az can be written:

5inBp,.,, ~ 5in(Bope+ A6) = y?oz | (65)
PR

which upon making the small angle assumption on A8 becomes:

no = —BL . - b2 (66)
y|°PRc°S OPR y|0pR

It should be noted that the Az deflections can result, depending on rotor con-
figuration, from flatwise bending, edgewise bending, flapping and/or lagging.
Thus, A® can generally be written as:

A8 =9wiqwi+ kaqvk+93[3 +658 . (67)

and the deflection of the reference point of the blade attachment point section
(point O, in Fig. 5) can similarly be written as:

A

2 = "~§0,, 08 = 8zq, * B2, * AzgB +Az8 (68)
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" The above development can then be inc¢orporated into a comprehensive
modeling of pitch-flat/edge coupling effects by building upon the following
two considerations. First, the incremental pitch angle,A®, can be incorporated
into the total pitch angle and twist rate, again using the pseudo-torsion mode:

NTM

® = er,qawg, (8, +48) +8, (69)
j=
, NIMm i i
&= . % 99, g o * 20 + 6, (70)

Hence, the incremental pitch angle'gpnerates gerodynamic and inertia loads
proportional to those which would be generated by the root deflection angle,
8r, whose dynamics are described by Eq. (63a).

The second consideration is that in the process of equilibrating the
blade in torsion and maintaining the push-rod attachment point at its level
position (as indicated above in Fig. 5) a push-rod force is generated equal
in magnitude to the applied torsion moments on the blade divided by the push-
rod offset distance, but directed in the negative Zs direction:

F, =-M y 1
“SpR stR/ymPR ()
where the torsion moment is obtained from Eq..(63a) and given by:

M*s = K9z f 7@ [dlstrlbuted torsion loodmg]dr

72)
(Gu), (
- ___Ji
Kgl[eo +480 +);,j(rJ) +GB(|;,)] + 9



The push-rod force, Fi:", is then a (negative) concentrated force acting on
the virtual displacemen®: This displacement is derived from Eg. (68) and is

expressible by the following equation

82, = AziSqwi+ Azk8qvk+AzBSE + Az 3(8)

(73)

Therefore, combining Egs. (71) and (72)-and using Eq. (67), the bending equa-

tions and those for flapping and lagging are modified as follows:

i'th flatwise bending, Eq. (2k4):

n
_/;{(Ywi— aw; )inertia loads) + ...}dr + BwiMx

I
+_£ {(Ywi—Awi)(aerodynamic loads) + } dr +...

k'th edgewlse bending, Eq. (25):

| _
.é {()’Vk- Av )inertia loads) + } dr+ e"kfo’Pn

|
+j;{();,k- Av, M aerodynamic loads) +...}dr +...

rigid flapping, Eq. (31):

'
o

!
‘{;(r_pzs- 25Dy~ qys) dr + eBM"spR"' ... =

"
(]

"
o]

(15)

(76)
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rigid lead-lagging, Eq. (32):

| .
‘g(rpys— y5p,5+qzs)dr + GSMXSPR+ ...=0 | (7.7.)

The inertia matrix, [AJ, developed in an above subsection cah thenwbe
modified, as a result of Egs. (69) and (73) thru (77), to the following general
forms:

APQ = APQ + GPAGNQ + BQ(APON+ BPAONGN) (783')
Apy = Aoy +8,A (78b)
Paj P% P 6&%

where P and Q denote any of the subscripts, Wis Vi g or §, and where ﬁi denot:
any of the basic inertia matrix components given in Egs. (46a) thru (héng. Thi:
technique for the introduction of a finite push-rod force in the bending, flap-
ping and lagging equations is appropriate only for the case wherein the root
torsion retention stiffness is assumed infinite, no rigid feathering degree-of-
freedom exists and the incremental pitch angle 1s automatic. For cases where

a finite root stiffness exists the push-rod force is expressible more conve-~

niently using deflection dependent spring forces,

The above somewhat abbreviated development is sufficient to write all the
explicit terms involving automatic pitch change due to blade bending, flapping,
and/or lead-lagging. For the bearingless rotor with a cantilevered torque tube
however, this development must be expanded to include the finite effects of
flexbeam bending. This bending gives rise to the low stiffness torsion (wob-
ble) mode whose equations are developed in the next subsection.



AFROELASTIC SIMULATION OF BLADE TORSION WOBBLE-MODE

The cantilevered torque tube configuration bearingless rotor comprises a
relatively simple mechanical system. The torque tube 1s attached at its in-
board end to the push-rod and at its outboard end to the flexbeam and outer
blade portions of the blade by means of a cantilever mount (see Fig. 6).
Typically, the skin of the outer blade portion would continue inboard from the

© flexbeam- torque tube juncture to form the hollow torgque tube. As shown in
Fig. 6, this configuration is characterized by & relatively long shear load
path for the push-rod loads.

. Three observations can be drawn from this figure. First, because of the
combination of flexbeam flexibility in both torsion and bending, the blade
possesses & rigld body feathering degree-of-freedom even with infinite control
system impedance. This torsion degree-of-freedom inherently involves signifi-
cant vertical or flatwise motion and is referred, herein, as the "wobble" mode.
Second, because flexbeam bending plays & primary role in defining the restor-
ing moment for this mode, an analytic calculation of this flexibllity is re-
quired. Third, as & result of this flexbesm bending flexibility the conven-
tional automatic pitch change coupling described in the previous subsection is
no longer completely applicable., In the present case, the effect of bending
modal deflection is to develop & push-rod load which acts as an applied torque
to the wobble mode, which in turn has finite impedance characteristics. Thus,
for the cantllevered torque tube configuration effective pitch—flat/edge
couplings may, in general, be dynamically amplified and phase lagged. The
development of the equations governing the wobble mode presented herein drews
upon the pseudo-torsion mode formulations of the previous subsection.
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Flatwise Flexibility Characterlistics of
Flexbeam - Cantilevered Torque Tube Assembly

The required quantitative description of the flexbeam bending flexibility
is the flatwise deflection of the inboard end of the cantilever mounted torque-
tube per unit load applied at the same point. The assumptions made for this
calculation are 1) - that the torque tube is rigid in bending, 2) that the
effects of flexbeam twlst angle can be neglected, 3) that over the flexbeanm .
span the tension is constant and equal to that due to total blade mass (i.e.,
the flexbeam is massless) and 4) that the junction point is at the midpoint
of a blade segment. The elastic problem so formulated is solved by means of
transfer matrix techniques using the distributed (lumped) mass and flatiise
stiffness properties assumed for calculating the normal flatwise bending modes.
Figure 7 shows the features of the mathematical model of the total blade. It
is to be noted, furthermore, that all the blade segments are in & centrifugal
force field. '

AN

FLEXBEAM \ X I I—]

(MASSLESS) /
o ' " OUTER PORTION OF BLADE

Figure T. - Features of Mathematical Model for Calculating Flatwise Flexibility
Characteristics of Inboard End of Cantilevered Torque Tube.
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Since the junction point is assumed to act at the midpoint of a segment
and since the centrifugal force is a strong (but known) function of span, each
blade segment is further broken down into two semi-segments, each of which is
then assumed to have a constant (average) tension. Then, for each semi-segment,
the inboard loads and deflections, expressible as a state vector, can be related
to the outboard loads and deflections by means of an _'a.ppropria.tely calculated
transfer matrix: '

S S
0 = [y ¢ ¢ Kk=hz,..., 2(NsEo) (79)
z Ky z ko
where:
’_’ .
I 0 o o
[L+(E£BB—L——L)C, [|+(cosh,[5'|_—|)c| T --Sin;i-c, (80a)
+ (coshBL—l)czl + ca,Bsinh BL] -CZCOShBL+C3]
[7] =
4 (sirhBL | sinhBL
(5 ) Freshaen 1 =S
- 'Tl‘— (coshBL-1) - % sinhBL 0 coshBL
- —
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The various terms are evaluated at the k'th semi-segment and defined as follows:

T = average tension = 1/2 (TI+T0)' ' ' (80ov)
B = /T/El _ _ | (80c)
L = I/2AX (80a)
¢ =kl em2 (L3 + L ' (80e)
1==1To 2L T 20
m (1 X1 1 8or
c2* 73 (l2-L+30) (80z)
om0 X
©C3F % (E L +2_0) (808)
and where:

S S
m{ . )Im
z z k=1 corresponds to the (80n)
Z z biade tip semi-segment

Cascade matrix multiplication, together with the introduction of the
additional shear and moment at the junction point (arising from the unit load,
P) and the imposition of boundary conditions (geometric at the root and loading
at the tip) leads to a matrix equation of the following form:

- (143

root tip

+{n}e . (81)

oo w
N NOO
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This matrix equation constitutes & solvable set of four equations in four
unknowns. A partial cascade multiplication of transfer matrices, T,, relat-
ing the junction state vector to the tip state vector, is then used to ob-
tain the deflection and slope at the junction point:
{Zg} - Jorre]fr) (82)
z; _ '

The final required flexibility is obtainable from these two quantities as

follows: ' :

NN O.-O.

2

, . ST E ‘

where:

S T = length of torque tube

T

Kp. = flatwise angular spring restraining the torque-
J tube to the blade spar (flexbeam )

Flastic Rigid Feathering Torsional Restraint

The combined effects of flexbeam bending, flexbeam torsion and control
system flexibility can be determined by examining and summing the contributions
to the vertical deflection of the push-rod attachment point. As shown in Fig.
8, the attachment point is allowed to deflect sequentially due to the effects
of blade bending (Az), of flexbeam bending due to the application of the push-
rod load (z,), of flexbeam torsion (Og), and finally of control-system flex-

ibility (z3).
The final attachment point deflection is thus given by the following

expressions:

23= 82-2,+§i0, Br (8k4)
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~ DEFLECTED POSITION WITH
ZERO PUSH—ROD LOAD '

FINAL POSITION WITH
PUSH—ROD AND ROTATION

UNLOADED, UNDEFLECTED POSITION

Figure 8. - Contributions to Vertical Deflection of Push-Rod Attachment Point,
Cantilevered Torque Tube.

This deflection together with the actual control system stiffness, Ke3,
defines the push-rod load:

= K03 - K03 "
Fer = 32 Z3 = 32 (Az-25 + Y0, 6R) (85)
Opgr 10pR . .

where:

Ke3 = actual control system stiffness.

Recognizing that the zp deflection is itself proportional to the push-rod
load: o

o7



2, Z-Fog (86)

enables the following expressions for the push-rod force and root moment to be
written: '

K, /§2 K
3 IOpr a 0> A
Fpg = (Az+Yg  0) = w5—(Az +Yy,, 6F) (872)
_ "2 10prR 2 iopr°R’
I +Kg, 2/ OrR PR 9l OrR PR
MR = ~ViopeFrR = Ko \Br=06) (87v)

where the effective root spring, introduced in the previous subsection, Keg’ is,
now given by:

K o5 (88)
0, = A
2 14 K032/y|%PR :

Dynamic Equation for Wobble Mode

As was observed above in this subsection the wobble mode is essentially a
rigid body feathering mode; hence, the developments of the previous subsection
can be drawn upon. First, the quantity A6 appearing in Eq. (87b) for this
cantilevered torque tube applicetion, must now be considered a normalization
of the flatwise displacement of the attachment point rather than, as in the
previous subsection, an automatic pitch change. Thus, the total pitch angle
and twist do not contain the quantity 46 and Eq. (6la) and (61b) become the
appropriate expressions for the total pitch angle and twist, respectively.
Using the root restraint moment, M, as defined by Eg. (1.87b) the dynamic
equation for the wobble mode then becomes & modification of the rigid feather-
ing Eq. (I.63a) given in the previous subsection:

(GU)eg. f
SFB I Brg

!
f)bRB[disfributed torsion Iooding] dr = Kg,(0g—-46) -
° (89)
+Kg, [60+ 8,,+>(g,j(r‘,)q‘9j + BB(I;,)]
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Comparison of this equation with Eq. (63a) shows a coupling of the wobble
mode with blade bending through the A8 term. It is reasonable to expect a
similar coupling of the bending equations with rigid body torsion through a
similar term. Indeed, the push-rod force, given by Eq. (87a) can be directly
incorporated in the flatwise and edgewlse bending equations to give the ex-
pected symmetrical elastic coupling:

i
j;{(Ywi-AWi)(inerﬁo loads) +...}dr _*'ewiKoz(BR"Ae)

. . (90)
+_/;.{(7wi-Awi)(oerodynamlc loads) + .. .}dr +...=0
[ _
j; {(rvk- Alvk)(inerﬁo loads) + ... } dr + 6, Kg, (6 - A6) 1)
+_[){(rvk-Avk)(oerodynomic loads) + .. .}dr +...=0

The development of this subsection has been directed to a type of bearing-
less rotor configuration which is characterized by a torgue tube which is
relatively stiff in bending. This high degree of torque tube bending stiffness
is generally required because of the inherently long load path for the -push-rod
shear loads. In the next subsection an alternate type of torque tube is con-
sidered whereln the torque tube bending stiffness is not generally high. This
characteristic leads to & degree of bending redundancy in the flexbeam .(torque
tube elastic system) and an appropriate analysis technique is required.
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REDUNDANT ANALYSIS OF FLEXBEAM - TORQUE
TUBE ASSEMBLIES WITH SNUBBER RESTRAINTS

Basically, bearingless rotor systems are characterized by an inboard span-
wise section comprised of two highly specialized and contrasting structural
elements (see Fig. 9). The first is the innermost portion of the blade spar
and is referred to as the flexbeam . Its function is to provide the inboard
bending stiffness appropriate to hingeless rotor blades, while at the same time
being very soft in torsion to allow the outer portion of the blade to be feath-
ered. The second structural element is typically a cylindrically formed shell
relatively stiff in torsion which encloses the flexbeam and is referred to as
the torque tube. The structural functions of the torque tube are to provide the
blade torsion system with sufficient general torsion stiffness inboard of the
Junction and to transmit those torques to the flexbeam which are needed to
produce the input control angles. The inboard end of the flexbeam is attached
directly to the hub whereas the inboard end of the torque tube attaches to the
control push-rod and to the flexbeam . More precisely, the inboard end of the
torque tube is restrained in torsion by the push-rod and control system, and
in shear by means of an (effective) pinned point (elastomeric snubber or equiv-
alent) attached to the flexbeam . The cantilevered torque tube described in an
earlier 'section is restrained both in torque and shear by means of the push-rod.
The redundant analysis of this latter configuration requires a much more exten-
sive development than is presented herein for pinned or snubbed configurations.
Because of the current viability of the snubbed configuration, and to a lesser
extent, the additional complications of analyzing the cantilevered configura-
tion, the present development is restricted to only pinned or snubbed configura-
tions. The two structural elements are attached (both to each other and to the
remaining outer portion of the blade) at their common outboard end point,
referred to alternatively as the Junction or juncture.

For typical bearingless rotor configurations the torque tube and outer
blade portion skin would be integrally formed (for practical fabrication reasons).
Hence, while the torque tube would nominally experience zero bending moments at
its inboard end (due to the effective pinned joint), it would necessarily sup-
port bending loads at its outboard end. Equilibrating the internal loads at
the junction point arising from the load transmissibilities of the flexbeam ,
torque tube and outer blade portions of the blade defines a doubly redundant
analysis. Over the flexbeam torque tube portion of the blade, dual load paths
are defined in both bending and torsion, and an appropriate solution must con-
sequently require that the elastic deflections of the Jjunction point, both in
bending and torsion of the three structural elements, are consistent. The
remaining portions of this section develop the detailed mathematical formula-
tion and solution to this redundant analysis problem. For conceptual clarifi-
cation the primary bending flexibility system is considered to be the flexbeam
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whereas the primary torsion system is considered to be the torque tube. The
subsections to follow include: first, a development of the bending stiff-
ness characteristics of the torque tube; second, a development of the '
torsional stiffness characteristics of the flexbeam arising from nonlinear
loadings; third, a method for estimating the internal loads immediately out-
board of the junction; and finally, a mathematical synthesis of these elements
to effect the complete solution to the redundant analysis.

Bending Stiffness Characteristics of the Torque Tube

The appropriate elastic bending description of the torque tube is a
stiffness matrix expressing the inboard shears, the outboard shears and the
outboard moments as linear combinations of the relative deflections of the
ends of the torque tube. To this end the following specific assumptions are
made:

1. The torque tube is a beam whose section properties have generally
nonuniform spanwise variation.

2. The torque tube has negligible twist but is inclined by the pitch
angle of the junction point. Hence, flatwise and edgewise stiffnesses
generally couple the in-plane and out-of-plane bending characteristics.

3. The spanwise in-plane and out-of-plane load distributions over the
torque~-tube span act directly upon the flexbeam ; i.e., the torque tube
is transparent to these loadings.

4, The radial loadings due to torque tube mass (centrifugal forces) con-
tribute to the stiffening of the torque tube in bending.

5. In addition to having distributed bending stiffnesses, the torque

tube is elastically restrained at its outboard end with finite angular
springs (defined in torque tube flatwise and edgewise orientations) and

at the inboard end with finite lineal shear springs (defined alternatively
elther in torque tube flatwise and edgewise, or in hub out-of-plane and
in-plane orgentations).

6. The torque tube is supported radially either at its inboard end
(torque tube in tension) or at its outboard end (torque tube in compression).

Assuming the torque tube to be a beam allows a transfer matrix solution
similar to that employed in the previous section for calculating the flatwise

flexibility of the flexbeam . Analysis of a beam segment with constant pro-

perties forms the basis for evaluating each component transfer matrix and
follows from a consideration of such a beam segment shown below in Fig. 10.



Figure 10. - Loads and Deflections of a Beam Element

with Constant Section Properties.

Use of the standard beam theory requires thé bending equilibrium equation
for the k'th element to be written as:

(EN, -T2 = (L -XSo + Mg =T 2o (92)

where the average tension is:

'.I‘-

. L

As shown in Fig. 10, Ek represents the average tension over the beam
element. Note that for torque tubes in compression Tk would be a negative
number. The boundary conditions appropriate to Eq. (92) are:
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zIk, z=zlk ot x=0
z =20, 7= z'ok ot x=1, }

(94)

For torque tube elements in tension the above formulation duplicates that
given in the previous section and the resulting transfer matrix, as given by
Eqs. (80a,b,c, and d) is applicable to this case. For the case of a torque
tube in compression, the quantity, B, is then defined as:

B = /-T/€1 = /C/EI (95)
and the resulting component transfer matrix is given as:
B | (o] 0 0] ]
sinBL _ =[ sinBL
[L+ (L_ lB )d| [1 +(1-cosBL)d, o c[— 3 d
+ (,_ %)dal +BsinBLdz] -dacosBL+d3]
(] - (%6e)
| sin BL 1 _sinSL
L (L_ ! ) Li-cosBL) 1 =
%_' (1 = cosBL) % sinBL o} cosBL
L —k
X
o F [-corme (3 + )] (56)
_mL3 [ Xg I
%= T (G + %) (96e)
B (X .1
4= B (a2t +35) (96)



As in the previous section, the total (uncoupled) stiffness matrices,
for both flatwise and edgewise bending are obtained by a cascade multipli-

cation of the component transfer matrices as indicated below:

(7] - T1[%]

(97)

The uncoupled edgewise and flatwise stiffness matrices are defined in the

"6" coordinate system and are denoted as:

(98a)

(98b)

where the subscripts (S) and (J) denote, respectively, the snubber and juncture

ends of the torque tube.

;.
relationships:

s - y’s'

1t YrB

4

6
It

Egs. (98a and b) must then be coupled by the effects

_yg

-ze

Ira

Ky

)-K,

of juncture moment springs, snubber shear springs and torque tube pitch angle,
The juncture moment retention springs are defined by the following simple

(99a)

(990)
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Similarly, for inboard snubber shear springs aligned in the torque tube
flatwise and edgewise directions ("6" coordinate system), the following rela-
tionships hold: - .

. - . 100a
(Sygls = Yos yssFB) Ksg (100a)

K, (1000)

(Sz¢)s - ZGsrT

Zg
6
SFB

Noting that M&6 'and MZ6s are both zero (snubber transmits shear only),
Eqs. (99a and b and $008 and b) can then be combined with the definition for
the uncoupled stiffness matrices ( 98a and b) to give the following matrix

equations.
- " ] B t t B
by Thatha Ky O SVGs 0 ty Tg4 y
- . 6
0 -ty etttk O Sve, O 13 124 y *
- - = 6
Koe ~ta ~taattsgKe O ) Mz, SURE - T 7 V'eJ (101a)
— ! J
s _l — — j
| S
0 _.1'2| -'22"' f24KJF 0] SZGJ 0] 123 t24 26
-} -l . = - J
Ksg ~ta “taatisKy. O )My b taz  tag ) (101b)
-1 , J . ZGJ

In both of these matrix equations the respective premultiplicative
matrices on the left hand sides can be inverted to give modified stiffness
matrices denoted in the following abbreviated form:

Syss .
S .78
Ye, ] s (102a)
Zg, /
’ ys\.'
Yes FB
TT



6
S %6
Zg, . [RF] Z .
-My o) ' (102b)
8 Ze,
Zeg FB
TT

Thesé equations can be represented even more compactly using the follow-
ing notation:

Lyg Re |0. | | AYe
=
o |Re| (BZ6

(103)

L
Ze Jrr FB

Because both edgewlse and flatwise transfer matrices were derived
"uncoupled” (i.e., each assumes zero deflection for the other), the loads
given by Eq. (103) are properly interpreted to lie in the planes defined by
the torque tube sections at the snubber and at the juncture. These planes are
oriented by rotations about the ¥s and 25 (or g and z6) axes by amounts deter-
mined by the blade slopes at the snubber and juncture points. For what
follows, the subscript "7" is given to the moments so defined by the torque
tube stiffness matrix with the understanding that they lie in the plane defined
by the torque tube section at the juncture.

Transformation to the "5" coordinate system using trigonometric resolu-
tions (rotations through the angle, OJ) on the elastic load vectors, LY6 and
LZ6’ and the deflection vectors AY6 and AZg then yield the following coupled
form: .

Ly : REcoszed+RFsin28\, | (RE'RF)Sinﬁowng__ {_A_‘fs_}
- - 2 '
i (Rg-Rp)sin@,cos®, | RgSin ®,+Recos @ | | AZs)_ (104)

or, in abbreviated notation:

SR {Ls}(:: - [3o] {AS}FB - (105)

where the (d) superscript denotes loads due to the (A5)FB deflections.
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Should the inboard snubber springs be aligned in the hub axis system
rather than in the torque tube flatwlse, edgewise system, then Kg -1 and

KSF'l in Eqs. (10la and b) are zero and the following description of the
snubber elasticity must be used:

(Syﬁ)s = (y‘,,sTT y5sFB) K"‘Ys _ (106a)
- (sls)s = (25STT ZssFB)'Kszs_ (lO6b)

These linear relationships are then inserted into the elastic description as
follows:

(d)

B -1 . ]
= =l
-52|KS —524Ksz
_|y5 -1 ® 0 Lys
~ Sy Ks’s I3 ‘53,4,'(525
~ =
~S, K ~SaaK
o TR ) e
| . FB  (107)
-su K. 1-s K, 0]
~SeiKg ~ SeqKs,
-|y5 0 - s Lz
-SK - S K 1
TKsy, aKs,, 3 \
- -
- =Sal Ksy5 - SMKSZS Al TT

where Ksy and Ksz are the snubber springs in the in-plane and out-of-plane

direction8, respectively. Eq. (107) can then be inverted to yield the desired
form, similar to Eq. (105):



(d)

i’sJ zss
@ ). S -
{L5}:T = :55 - [s.] Zs\,_ - [s,]{As}FB (108)
sts 253
_MZ;’J Z':J
7, J/FB
s TT

where the subscript (FB) on the right-hand side indicates deflections of the
flexbeam at points where the torque tube and/or torque tube retention springs
are attached. Note that the torque tube inboard slopes are included in the
load vector first to indicate that they, like the loads, result from the spe-
cified deflections on the RHS of this equation, and second, to show where in
the analysis these quantities are formed when needed for pitch-flat/edge
coupling calculations. In practice, these quantities, once formed are parti-
tioned out and handled separately. In subsequent development they will be
omitted from the load vector, for clarity.

The total internal loads acting at the ends of the torque tube consist
of those elastically produced by the deflections, given by the above equation,
and those loads arising from blade root torques and the resulting push-rod
loads. The torque tube and loads due to push-rod loads are already implicitly
included in the flatwise and edgewise bending excitation equations by reason
of the particular method for including pitch-flat/edge coupling discussed in
an above section. These loads, however, must be explicitly evaluated to
implement the torsional redundancy portion of the redundant analysis. The
remaining portion of this subsection discusses those derivations needed to
calculate the pitch-flat/edge coupling when a flexible torque tube is employed,
how Eq. (108) for elastic flexibility is used to account for the bending redun-
dancy portion of the redundant analysis,and how the torque tube loads due to
push-rod force can be estimated.

As vas described in an above section and shown in Fig. 6, pitch-flat/

edge coupling effects are calculated from the geometry of the pitch-horn and
from knowledge of the unconstralned vertical deflection of the attachment
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point, Az, for unit deflections of the various modes. With the above analyt-
ical description of torque tube bending flexibility this can be readily accom- .
plished. The Az .deflections per modal deflection for this case can be obtained
from the last row of Eq. (108) for (25 )TT and from (z5s) which is either
equal to (z or, if the ‘snubber spring rates are finite, calculable from
the linear relF%ionshlps given by Egs. (100b) through (105) and (106b) through
(108) using routine algebraic manipulations. After these manipulations are
performed, (z5s)TT and (Zés)TT and, by linear combination, Az, can be ex-—

pressed as a linear combination of the flexbesm deflections due to unit modal
deflections:

Az = (25)  + (ropmt)Zg pp = |Qrr) < Y ¢ (109)

\ 25‘j Jper unit modal deflection

The above eguation for Az is then used with the derivation in Section V to
obtain the values of modal pitch-flat/edge coupling.

The bending redundancy portion of the redundant analysis is accomplished
by treating the snubber and juncture loads defined by Eq. (108) as concen--
trated loads for direct inclusion in Egs. (24) and (25) as is provided for in
these response equations. Due to the linear character of Eq. (108), the
bending redundancy can be included in the eigensolution as well as the time-
history solution.

Calculation of the external torque tube and loads resisting the push-rod
force is accomplished by equivalencing the virtual work due to the push-rod
load with that due to the equilibrating torque tube and loads. To this end
Eqs. (109) can be used in the following manner:

Sv

Fpr' 84z = Fpg I_QTTJ'S{AS}FB (110)

= -|-Sy_, Sy. , Mz ,-S Sze , M J-S{A}
l Ysg» “¥s,0 M25,0 TVZ5gr Y25, TMYs, *Jra



Therefore, since the component virtual displacements are independent,

the external end loads needed to equilibrate the push-rod force, Fpgp, are
given by the following:

ArT,

“Qrr,
(PR)

“Qrr
{Ls} . { q 3 > Feg (111)
T TT,

“Qr1g
, 9717

which, when combined with Eq. (108), yields the total internal loads at the
ends of the torgue tube:

(
Yss\ -Arr, \
@ (PR) A | o
L - {L L = [s S0\ 4+ T3 M F (112)
{ S}TT { S}TT +{ 5}TT [ |] 255> <‘qTT4 ( For
ZPJ qTT
ZsJ)FB \_qTT:)

In addition to the loads given by the above equation, the radial shear
at the Jjuncture, Sx5J: is given by the following:

0 ; torque tube in tension

(Sy oo = r (113)
5017 - f v (Pyg)rpdrs torque tube in compression
0

Note that the axial torsion moment at the outboard end,.(Mx7 )TT’ inecludes
the effect of the flexbeam resisting moment and, hence, mus% be solved for
using the redundant analysis. The following subsection formulates the analysis

stiffness matrices required to define the detailed torsional stiffness of the
flexbeanm .
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Torsional Stiffness Characteristics of the Flexbeam

Calculation of an appropriate stiffness matrix statement for the flexi-
bility of the flexbeam ,requires that two special characteristics of the flex-
beam be accounted for: First, the composite material flexbemm is a plate-
like beam whose cross section has a typical aspect ratio of order of magnitude
10; furthermore although the flexbeam is relatively soft in torsion (low GJ),
it retains a relatively high bending modulus (high EI). Hence, it is reason-
able to expect that the appropriate differential equation governing the

- torsional elastic characteristics should contain the torsional stiffening

effects due to plate bending. Second, the B; and B, constants were retained
in the general development of the blade torsion equation (Eq. 30) principally
for applicability to non-helicopter rotor applications (i.e. propellers and
wind turbines). However, the effect of these constants on the total stiff-
nesses of composite bearingless (helicopter) rotor flexbeams is considered
to be.negligible. Indeed, assuming a large section aspect ratio (c'2 10),
the ratio of twist squared stiffening to St. Venant (GJ) stiffening can be
approximated by the following torsion stiffness ratio:

o) . 2 (e e (e aof

For comparable section and planform aspect ratios (c/t and L/c, respec-
tively) and even for an E/G) ratio of 25, typical of unidirectional carbon-
epoxy sections, the above torsion stiffness ratio reduces to approximately
0. hAe The total flexbeam twist angle, A®, then must be in excess of 25
degrees to achieve a torsion stiffness ratio of 0.1, which is considered
Justifiably small for present purposes. Third, because of the length of the
flexbeam and the nature of the bending loads and deflections at its outboard
end (resulting from torque tube and outer blade generated internal loads), the
torsion moment over the flexbeam span is generally variable and contains
components due to all six concentrated loads at the juncture. These three con-
siderations thereby define the following differential equation for a torsional
element with constant section properties:

3 "
_Dbc> 9

S AR L (6u+TKR)6 Myglr) (114)



wherein boundary conditions on 6 and 6' must be specified at the inner and
outer ends of each torsion element. At the ends of the total length flex-

beam (inboard end (k = 1), and the juncture end (k = K)), the appropriate
boundary conditions are:

8(0) = 810) = 8(ry) = 0

11
e(rJ) = OJ—BBFBE AQJ - ( 5)

Before solving Eq. (114) let us first examine the structure of the right-
hand side. Figure 1l below shows the origins of the spanwise variable internal
torque which accrue from combinations of loading and deflection at the out-
board (juncture) end of the flexbeam .

|

{B & 8 ZERO, FOR CLARITY)

ELASTIC AXIS OF
FLEXBEAM

M /\sv
fb LOADS APPLIED TO
FLEXBEAM BY'
>TORQUE TUBE AND
M, QUTER PORTION
OF THE BLADE

.Figure 11+ Pictorlial View of Flexbeam Showing Deflections and Applied lLoads
. Producing Spanwlise Variable Torsion Moment.
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Eq'.- (27) can be readily adapted to the present case wherein the loads are con-
centrated at a point; the following expression for the spanwise variable-
torsion moment, Mx9, can then be written as:

ng(r) = '[(st' Zs)yls — -(ysd- y5) le] st— [ZSJ_- 25 -(s~- r)25] Sys

+[y5J'—y5 -(s -r)y’,,] Sz + y’_,,My5+ Z, Mzs+ st (116)

Since the span of the flexbeam is short relative to the total blade span,
the in-plane and out-of-plane deflections, y5 andzg, respectively, can be
approximated by polynomials defined by the deflections and slopes at the Jjunc-
ture. With the definition of a flexbeam spanwise variable:

n = /S (117)

the deflection (and corresponding slope) in either of the two directions can
be expressed by the following general expressions:

(yg Or 2g) = f = (3f,-3f)n%-(2f,~5f)7n° | (118a)

f =

(yg OF Zg)

%[(sf‘, ~25f))m - (sfd—3§f:,)n2] (118b)

where :

5= S/R (118¢)



By using Eqs, (118a and b), Eq. (116) can be expressed as a polynomial
in the flexbeam -spanwise variable, T):

2 4 ’ ) ’ _ P 2_ 3 _ '
ng(-r;) = (2n-3n"+1 )sxs(ysdzsd—zs‘lysd) + (1-61 +979°-4q )(styf’a Sy sz)

+ 28 | ‘ , 6 2 :
+ 25(”'2”2+”3)(525V5J'Sysz%’ + M0 My  ys + Mz Zg )

2 ’ ’ ll
-(27-3q )(My5y5d+ M2525J) + Mxg (119)

Thus, the right-hand side of Eq. (114) is seen to be a palynomial of
fourth degree in the spanwise variable 7. Since the flexbeam , like the torque
tube, will have section properties variable with span, a transfer matrix solu-
tion using span segments must be employed. For any constant section spanwise
segment the appropriate general solution to Eq. (114) becomes:

5 .
8 - ce®+0eM+ 3 H.' (120)
i=0

where C, D and H; are constants to be determined from the boundary conditions
and from the polynomial coefficients of Eq. (119), and where the section
characteristic constant, A, is given by:

- 25 /3 2
A= 220/ Be 16U +TKY) (121)

Since all the boundary conditions given by (115) can be used only after
all the component transfer matrices are cascaded, one of the H; constants,
H, specifically, must be treated as a state variable (like ® and 6') and varied
by each component transfer matrix. Eq. (120) can then be used to form an
intermediate (partial) transfer matrix equation:

7
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9 coshit - —'A-sinhu (1—coshA)

7, B
8 p = | -Asinhag coshAt AsinhAL B+
Ho) o - 0 ! Hoy,
5 i . jr1sinhAg . (122)
+3 ™ My~ MeCoshAas + L —
h . e i . s 1=l
izl ing' + myAsinhAL-in 'coshaL

o

where, for each k'th segment, the constants H; (1 = 1, 2, ..., 5) are com-
pletely determined by the section properties and the polynomial coefficients
of Eq. (119). The length of the k'th spanwise segment, Lk, is conveniently
taken to be the blade break-up segment length, Ax, , divided by S. More speci-
fically, using the followlng notations:

] o_c?’) . b 2
A = (IZL ) By = g (OY + T
4 . 123
My (n) = ):Tm' (123)
S i=0

the explicit expressions for Hjy can be written as:

= [ A A
M = g [To * 2(§)k T, + 24(-B—)k74] (124a)
- [
Hoy, = BLk T+ 3(%)kT3] (124b)
Hak = _l_P._'_T + 4(A T.. (12ke)
3k~ B, L3 27 "\B) 4
Ha ™ 38, 3% Mok ™ 5g,_ T4 (1244 & e)

Equation (122) is deemed a partial transfer matrix because it does not
yet include the transfer of the H, constant from one segment to the next;
one additional relationship is thus required to complete the transfer matrix
formulation. For this purpose, Eq. (114) can be integrated across an inter-
segment junction point, (M = ﬁk-,k+l):



al+)

- [—A9”+ 89] Al+) : A:-'-')(’ *

[-a6"+ 86] o
"=‘qk’ K+t 1’=nk’ k+i qk,k‘ﬂ.

My (n)dn = O (125)

Since the torsion moment is a smooth continuous function over the entire
span the integral in the above equation must equal zero. Therefore the quantity
(-A6"+B6) must be continuous across the inter-segment junction point. This
relationship results in the following additional required equation:

5 ; i
" al TH ai=2
[-a6+868] = Brg+ X Hik[Bihy o m Aiti-0 A2, ]
72T ke e ' T

5 (126)

Ai - i‘z ]
Bk+| HO,k+| + gl Hi,k+| [Bk"'lnk,k“'l-Ak+|l(|—|)‘a'k' k+|

Combining Eqs. (122) and (126) yields the following final expression for the

complete transfer matrix equation:
— -

L sinh Ben [1- coshtasy,]
8 cosh(AL), —-X;sm (A2)y By cos k 0
"\ . B _ '
8 -Aksinh(u)k cosh(ag), Bk:' Aksmh()\,l.)k 8
Ho Ho
k 0 0 Bk"‘l / Bk | k+1
niI— 'r)gcoshu + “T) -qi(;' sinhA 2
5 ) . ,
+ Z| Hix (i)-q'l" +m Asinh AL - (i)-q'o" coshAz (127)
\=

0
k
I- coshAt

5 . A , 8 o ) .
. _t K, .\, i-2 ket 0 Pkt ayes oy i-2 xsinhas
+ Z [H.k ( "lok+ By (|)(|—|)'r)ok ) + Hi ke (_Bk "rok B, (1) |)-p;ok )] i
| I
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Note that the Hiyy constants, (i = 1, 2,....,5) in the above equation are com-
pletely determined by Egs. (124a through e). This transfer matrix equation
for the k'th segment can then be suitably cascaded to yleld a final matrix
equation, relating the state variables at the flexbeam root to those at
the Juncture:

To
e 6 T,
8 p - [E] 8 » + [F] T, (128)
Ho Ho T3
| K Ta

The E and F matrices appearing in this equation are the result of appropriate
cascading and, hence, are not sufficiently simple to express explicitly herein.
They are calculable, however, in a straightforward manner using routine matrix
algebra.

Application of the boundary conditions, Eq. (115) together with the
elimination of (Ho)l and (Ho)k from the above equation set results in the
following expression for the elastic torsion deflection of the flexbeam. at
the juncture:

t 4
A8, = Titfa,iv1€3~ fi.iv1€23) (129a)
J (e||e23-e2|e|3) o iv'2,1+1 ™13 lLLi+1~23

where eij end f.k are the elements of the E and F matrices, respectively, and
where from Eq. %119):

To ) o0 o o o 1] Szg¥s,~ SysZs, (129 )
T, 2 6 25 &5 20 S10 Yo, Sy.7s
T, p=|-3 9 -45 /8 3 0 R RS
Ts 0 -4 25 0 0 0 MysYs, * MzgZs,
Ts |1 0 0 0 0 off M+ Mz 25,
Myg

FB



EQuations (129a and b) cam be combined using the following compact notation:

AeJ = esxsxs(stzs\" ZSJ st)FB

+ 6 - 5" :
85(Sz5 Y5, Sys 25 )pg + O5,(Sz, Vs~ Sy, 25, kg (130a)
+9M0(My5 y5J+ Mzs Z5J)FB + GMl(My5 y5J+ M25 Z5J)FB .
+8Onp M
MX X5 FB

or alternatively:

20, = 6, S"5Fa+ B"XM"5F9+ GSVSYSFB
' 130b
+6s, SZ5FB + Oy Mys g T GMzMstB (130b)

where the various stiffness coefficients in Eq. (130b) are deflection dependent.

Thus, the elastic torsion deflection, 487, is seen to result not only from
the usual radially oriented featherlng torque, My, but from various nonlinear
combinations of loads and deflection. The following subsection presents those
calculations needed to estimate the internal loads just outboard of the junc-
ture which must be equilibrated with the torque tube and. flexbeam loads at
the juncture.

Estimation of Internal Blade Shears and Moments
in Blade Adjacent to the Juncture

Two basic methods exist for estimating the instantaneous internal loads
in the outer portion of the blade: mode deflection and force-integration. A
comprehensive discussion of these two methods and their accuracy characteris-
tics is contained in Ref. 8 and will be omitted herein. Briefly, the former
is relatively simple to implement but requires smooth spanwise load distribu-
tions for accurate estimates with a small number of modal variables; the
latter is, prima facie, a more complicated method to implement but estimates
the loads with superior accuracy. The latter method (force integration) was
chosen because, for most practical helicopter applications, it is significantly
more accurate, and because the disadvantage by reason of complexity is molli-
fied by certain available features implicit in the general analysis solution.

9
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Because the torsional redundance portion of the redundant analysis itself
entails significant nonlinearities, thé redundant analysis effects are most
meaningfully included only in the total nonlinear formulation wherein the
equations are solved by numerical integration to obtain time-histories. Exam-
ination of the various differential equations formulated for the aeroelastic
responses, Egs. (24), (25), (30), (31), and (32) reveals that the inertia and
aerodynamic load distributions are used explicitly. That is, with the excep-
tion of the double (hondimensional) time derivatives of the response variables,
which are extracted to form the inertia matrix, all load distributions such as
Eqs. (41) and (4L) are calculated and used directly in the spanwise integra-
tions required for the various response excitations. Thus, the major necessary
complexity inherent in force-integration, that of having to calculate expli-~
citly the load distributions, is for the most part already satisfied. The
remaining requirement for implementation is to approximate the doubly differ-
entiated responses (vibratory accelerations, 4 ) and include them in the load
distributions.

The general time-history solution, as indicated by Eq. (26), implies that
at any one time step when the excitations are being calculated, the accelera-
tion is not yet known: The (RHS) of Eq. (26), which nominally excludes all
‘f 's, is first evaluated to calculate the Qf 's given on the (ILHS) of this
equation. Thus, to implement the force-integration calculation, epproximsa-
tions to theﬁf 's implicitly appearing in the (RHS) must be made. Fortunately,
the force-integration method is generally "forgiving" of such approximations
since loads due to vibratory acceleration usually act as dynamic corrections
to the "pseudo-static" loads. A discussion and formulation of the extrapola-
tion formula reguired to approximate these accelerations is contained in
Appendix I; briefly, for any response with an inherent natural frequency, w,
the acceleration can be approximated as:

L1 _ g 0
q, ~ 2005(<‘:A\Il)qk_l—qk_2 (131)

where A¥ is the integration step size. With this approximation formula, Egs.
(41a, b, and c¢) and (4ha, b, and ¢) can be evaluated and the following expres-
sions for the internal concentrated blade loads outboard and adjacent to the
Juncture can then be calculated. In these expressions, unless otherwise indi-
cated, the load distributlons are understood to contain both inertia and
aerodynamic contributions:



1 .
St jr; Pog " | ~ (132a)

S),sB = .{'I pysdr _ .- | (1325)
sZSB £ jr": Pz dr ' (132.c)
Mxg = [J' [axg + Pzg(¥s=ys,) = Pygl2s=25,)] 0" (1322)
Myg,, * {" [qoys- Pzgr=ry) + Pp, (25~ Z5J)] dr (132e)
MZSB = J: [q025+ pys(r-rd) - prs( y5-y5J)] dr (132f)

Additionally, the push-rod force, Fpg, appearing in Eq. (112) must
similarly be approximated. Upon using the principal (linear) component of the
flexbeam <torsional stiffness, the push-rod force can be approximated by:

2
F [(60)qy 58, + TKa® J]FB

I N { .
PR y'°PR Sre

l ’ [
_f [q“5+ Y5rys t Zsg025 ¥ Pzgl¥s~ V5~ Yog(r =) (133)
R

where the subscript (R) denotes conditions at the root of the torsionally
active portion of the blade. The above approximations together with the re-
sults of the two preceding subsections are sufficient to explicitly formulate
the details of the redundant analysis solution which is accomplished in the
following subsection.
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Mathematical Formulation of the Structural Redundancy

The results of the previous subsections can be brought together to form
& solution for all internal loads in the viclinity of the Juncture. From the
deflections of the juncture and inboard torque tube attachment point (snubber)
all concentrated juncture loads in the torque tube except torsion moment are
evaluated by means of Eqs. (112) and (113). All loads outboard of the juncture
are known from interaction of the spanwise loadings and are calculable using
Egs. (132a through f). Consequently, by equilibrating the internsl juncture
loads and imposing the consistency constraint on the elastic torsion deflec-
tion of flexbeam, the flexbeam &and thence, torque tube torsion moments are
determined. First, however, some attention must be paid to the internal bend-
ing moments in the torque tube at the juncture. These moments as calculated
using Eq. (112) are oriented in the torque tube section plane at the juncture
and must be rotated back to the "5" coordinate system using the following co-
ordlinate transformation pair:

p— P

= | -y M

"y IR b Tk (134a)
M -2 o I

Z7 | 5J _ 5
M bo-Yg, -2 My

X5 , 55 % 7 (134v)
My5 = Ys, I 0 My
M) Lz O '] My

The primary purpose of this redundant analysis is to obtain the incre-
mental torsion moment exerted by the flexbeamm +to the torque tube, AMk7, which
is given by:

AM = -M = —(M +Yys M +Zg M ) 135
x7TT X7FB XSFB YSJ Y5FB 5J ZSFB ( )

But the flexbeam 1loads are related to the outer blade and torque tube
loads by the equilibration of loads:



GLoth-bh

Use ‘of the coordinate transformation, Eq. (134a), on the outer blade
moments Eqs. (1324 through f), the torque tube loads, Eqs. (112 and 113) and
the equibration of loads given by Eq. (136) sufficiently determines all loads
in the "7" coordinate system except'Mx7 B’ which can be determined, however,
from the torsion stiffness equation of the flexbeam . Upon inclusion of the
effects of flexbeam built-in twist, (;BFB’ this equation can be rewritten as:

AQJ = OJ - eBFB = GSXSXSFB+ esy3y5F8+ esz 525F8

+ Oy |Mxy —ye My_ -ZsMy, -8 (lﬁ)] (137)
Mx|"*7eg Y8y Y7eg” 75 275 Brg\ S /g

+ : + + ¢
BMY(y15 JM,(_,'__B MyTFB) 9M2(25JM"7F5+ MZ7FB)

and solving for MK7FB ylelds the final required result:
2
_ . R ~| TkA)
AMyg 5 "My " (O, + y5Je“y+ Z5,9m;) [—AOJ-OMKBBFB( S /rs

(138)

Thig incremental moment is then included as a concentrated torsion moment
to the torsion response, Eq. (30) as is therein provided, to complete the
redundant analysis.

The section to follow develops -the equations needed for aeroelastic eigen-
solutions using a fixed azimuth approach. While the linearlzed equations derived
do contain the bending redundancy, they omit the (essentially nonlinear) torsion
redundancy described in this subsection.
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LINEARTZED FORM OF EQUATIONS

‘For time-history solutions of the complete nonlinear equations the complete:
explicit expansions of the inertial and aerodynamic load distributions are not
required. In fact, the implicit descriptions of these load distributions (Eqs.
(41), (44), and (59)) actually facilitate the formulation of these equations
and eliminate the requirement for assessing orders of magnitude in order to
achieve tractibility through simplification. On the other hand, the unique and

' desirable features of eigensolutions (i.e., relatively short computation time

for solution, identification of all coupled mode frequency and demping charac-
teristics and the availability of established analysis techniques for assessing
the behavior of linear systems) are sufficiently attractive to warrant equation
linearization using explicit expansions of these loadings. The purpose of this
subsection, therefore, is to present the main results of this linearization.
The relative orders of magnitude of the various dynamic and elastic quantities
are presented in Table I; from this tabulation the various coefficients in the

TABLE T

Assumed Relative Orders of Magnitude of Quantities Appearing in Aeroelastic
Dynamlc Equations.

€ € € ¥ €2
_ * o
r 0, 6 Ve, Weg Av,, Aw, Avg, Awg
, * ouE KX 2
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resulting expanded equations of motion were evaluated and retained only if they
did not exceed ¢2. As & result, some terms go retained remain nonlinear, but
are generally of a quadratic form (i.e., qq4- qb, Be s, Qg°9ps etc.). However,
these terms can be locally llnearized about predeflected positions. .The ex-
panded equations presented in Table I are consistently expanded to ¢2 in the
coefficients and have the quadratic nonlinear dynamic and elastic terms segre- .
gated for clarity.

Reasonable explicit expansions and linearizations of the aerodynamic load
distributions, contalined only implicitly in the above equations, can be achleved
within the context of various optional simplifying assumptions. The aerodynamic
linearization actually developed for the analysis parallels the aerodynamic de-
scription given in an above subsection so that the total linearization achleved
should represent a true "local linearization" of the total nonlinear equations
at any point in time. :

Using Eq. (I.59) as a starting point the following terms are seen to con-
tain all the independent response variables whose perturbations must be made:

Up = Vp-V,sin®-V;cos® (139a)

Uy = V7r+V, cos®-V,sin® ' (1391)
-1 Yp

Qs = Gy + 6, +A8 +1an (—u?) | (139¢)

M = %E-q/u§+u$ (139d)

where:
VP=A(I——€-2)'BU)‘"§  (1kom)
V,=e+ r(l - —ﬂ;— + 5) +p [(I - —aaf)sin\p;@cosw] (1&05)
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~ * l. ‘
Vy = (- A0, + Avd, +av e; 9w o,

—é[(r - AW,) Gy - Awkqv]+Ux[(7’v AV‘Z’)qv + 2 ] (140c)
~ _ * * _ %*
* (2, @
+®[()’vk—AVk)qvk+Aviqwi+le3_4€] +ux[(>' - AW )ay - AW, +®yl03c]
3

and where U, is given by Eq. (50).
Assuming that the partial derivatives of the airfoil aerodynamic coeffi-
cients, cy, ¢4, and cmc/h’ with respect to angle-of-atfack and Mach number are

available, the following expressions can be written for perturbational aero-
dynamic load distributions:

2
. _ 1 PR Up
Bpay * 7 Mg { [ATSA

oC, aCI Ur dCd aCd
* ”[CI+UP Z(aa Ur* 3m MUP) T2\ Ta Ut * amMUe)|( 3lp
+ {—Ul [ClUp- CdU-|] + U[ U—Z (—a—a Up + 4/ M MUT) (l’-l-l)

Ur 0Cq 0Cy

86



L PRZ 1) %
SpAzsz ?—ﬁCi{ U [CIUT+CdUP]

it W + — +
+ul o5 ( 3o Ut g MUp) +Co * 3 Ur
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+ {—Ul[c‘uT+ Caue] + u[c,+ U—; (—a—a‘-up+ —‘MUT)
* Uf-(" 3a Yr+ M Mut)|(3Ur

. ac, aCq
U\ e * %o )%®

R® j » U oC ac

' ,
- KAX5U 30 + yloc/48 [cos@pAZS- snn@pAys]i

where:

8Up = 8V~ (¥, cos® -V, sin®) 3@ -sin®8 ¥y - cos@8V,

(242)

(143)

(1hka)
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8Uy = 8V, - (¥ sin ®+V,cosB@)3® +cos@®8YV, — sin@3 Y, - (1h40)

and where &V, 5¥ , 8V, and 6V are obtained from appropriate differentiations
of Egs. (1k0) and (62b¥ or (69)

Further explicit expansions of the perturbational airload distributions
beyond this point would rapidly become overly tedious, and voluminous andwould,
thus, not serve much additional purpose. The above development together with
appropriate straightforward perturbations of the component air velocities are
sufficient to form the desired perturbational airloads. The perturbational
inertia loads are obtained in a similar menner using Eqs. (4la, b and ¢) and
Egs. (bla, b and c).
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APPENDIX T

QUADRATURE FORMULAE USED IN FROGRAM GLOO

The time-history solution of the fully nonlinear set of dynamic equatlons
of motion, Eq. (26), requires an appropriate set of numerical integration,
extrapolation and differentiation formulae. Numerical integration in (nondi-
mensional) time is required for the basic solution of the nonlinear equation
set in a conventional step-by-step fashion. Furthermore, when various of the
elastic modal response variables are characterized by large natural frequencles
(2 12P), numerically stable integrations would require prohibitively small
integration step sizes. For such cases it becomes reasonable to_assume that
the inertia (§°) term is negligible compared with the elastic (E?q) term,

This assumption permits eliminating the double integration of the inertia term
and substituting a "quasi-static" solution which involves an appropriate
extrapolation of the response vaeriable. Finally, whereas Eq. (26) 1mplies
that the right-hand side is a function devoid of explicit linear terms in (1
(the highest derivatives of q), various explicit or implicit nonlinear terms
in these derivatives may still exist. Two particular sources of nonlinear
double time derivative dependancy are the estimation of dynamic loads for use
in the redundant analysis, and the calculation of the second time derivative
of angle of attack as required for the unsteady airloads formulation (see Refs.
9 and 10 for a detailed description of this formulation). Because of such
nonlinearity, the usual time-history algorithm of solving for §* at a given
time using knowledge of the lower derivatives at that same instant is disrupted.
Hence, approximation to ff, based upon a reasonable extrapolation of past
values, is required for evaluation of these nonlinear terms on the right hand
side of Eq. (26). The following subsections describe the numerical algorithms
used to satisfy these three solution requirements.

Numercial Integration

Double integration of the response variable accelerations, 5?, to obtain
q and q at the next time step is accomplished using a variant of the Adams
method (without correctors). In this variant the accelerations are locally
assumed to be simple harmonics of their respective characteristic frequencies
in order to integrate over each subsequent time step. Denoting this frequency
as an "integration" frequency, w, the following slgorithms result:

£ (coswA\p-coszmAw )., _ (l—cosaAw )..
k k

*
Qe = 4 ZSnGAY GSnGAY (1.1)
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- : J—umaAw'-, » :
R (Tsmz,-—AT) G + ! (1.2)

where Ay is the integration step size. For each elastic (modal) degree of
freedom the integration frequency is taken to be its inputted uncoupled natural
frequency. The usual pendular frequencies of a rotating, hinged, rigld beam
are taken as the integration frequencies of the flapping and lead-lag degrees
of freedom.

Quasi-Static Solution

The static solution on any one of the response variables, g

s 18 achieved
by manipulating the simultaneous equation solution of Eq. (3&3

'd.sk = fs(qk’ ak: \Pk) (1.3)
into the following approximate form:

a | -
qsk= _G—Qfs(qkf Qx> ‘Pk) + QSk (1.%)

where, in general qs and qg, are not equal. The newly formed quantity, qsk,
i3 used only to effect an ex%rapolatlon to the subsequent time step:

»
A4y ° 2_/_;4, (qk qk 2) (I.5)

_ A A _ aA
Ayr = 3130+ Qy, — 2G, ) (1.6)

The results of Eqs. (I.5) and (I.6) are then used in exactly the same way as
those of Eqs. (I.1l) and (I.2) to evaluate the right-hand (excitation) side of
the equations of motion, Eq. (26). Furthermore, it should be stressed that
these equations give valid approximations only for, and should be limited to,
those cases where the integration frequency is large.



n
Extrapolation of g

‘As with the numerical integration scheme presented in an above subsection,
extrapolation of g is achieved by assuming the accelerations to.be locally
simple harmonic. The resulting extrapolation formula becomes:

. _ u‘ LA : : .
q, = 2(cos@AYIGy_,~ Gy (I.7)
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APPENDIX II
PROGRAM GUOO INPUT DESCRIPTION

The required input to the program consists of the following major punched
card data blocks in order of loading: ’

I. Airfoil Data
II. Inertia, Elastic, Geometric and other Operationmal Data
(in Ioader Format)
ITT. Blade Mode Shape Data
IV. Harmonics of Variable Inflow

Deteils for preparing the data for each of these blocks are given in the
sections which follow. An additional section of this appendix provides infor-
mation for facilitating program operation and improving its efficiency.

I. Airfoil Data

This data block consists of tables of two-dimensional 1ift, drag and
pitching moment coefficients each versus angle of attack for various Mach
numbers. Additionally, if unsteady aerodynamics are used, the static stall
angles and linear coefficient slopes for both 1lift and pitching moment are in-
cluded in this table. Provision is made for inputting and using only one set
of aerodynamic coefficients; hence, it is assumed that the same airfoil section
is used over the entire blade span., Provision is also made in the program for
optionally using an analytic representation of the NACA 0012 airfoil; if this
option is invoked it is not necessary to provide any airfoil data to the pro-
gram, For usage of the analybtic NACA 0012 airfoil option, however, the
required input for this block of data must be a single card with blank orxr
zeroed columns 1 and 2. For the general case, however, the airfoil data are
loaded in three subblocks (corresponding to Cys> Cg» and cnb/h data) using the
following general format; note that the required punch format is indicated by
the FORTRAN format informetion in parenthesis:

card #1: NZ TITLE (optional) (12,A78)




card #: JNMAQ) cnL(2) A(2) cn(2) ...A(k) cn(s) (12,10F7.0)

cards #2+ A(5) cL(5) ... (F9.0,9F7.0)

.+ .A(N) CL(N) ALSTAL DCIDAO (F9.0,9F7.0)

where: NZ is the number of Mach numbers for which groups of’cz data are to be
read in; TITLE is any (optional) identifying information., J is the number of
data entries to be inputted into each such group. N is the number of angle-
of-attack -c, abscissa-ordinate pairs to be 1nputted; N is restricted to a
maximum of 3ﬁ without, and 33 with the use of unsteady aerodynamics. M is

the Mach number appropriate to the data group. A(i) are the N angle-of-attack
abscissae in degrees and CL(i) are the N 1lift coefficient ordinates. AISTAL
and DCLDAQ are, respectively, the static stall angle, in degrees, and the

1lift curve slope at zero angle-of-attack, in per degree; these items are needed
only if the unsteady airloads option is invoked.

Cards 2 and 2+ are repeated for each successively higher Mach number. A
maximum of 12 Mach numbers is allowed and the lowest and highest Mach numbers
need not define the total working range as the search technique uses the
boundaxry data for Mach numbers beyond the inputted range. Thus, repeated data
for zero and supersonic Mach numbers are not needed. The lowest Mach number
inputted must contain an angle-of-attack range of from -180° to 180° or from
O0 to 180° depending on whether or not unsymmetric airfoil data is being
. inputted; all higher Mach number data need extend only from -30° to 30° or
from 0° to 30° in a similar manner.
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The general format described above is repeated for the cg and eme /L
subblocks in that order. The static stall angles and aerodynamic coefficient
curve slopes at zero angle-of-attack are deleted for the cg subblock,

IT. TInertia, Elastic, Geometric and Other Operational Data
This éata bloék includes those items used to define the more detailed

dynamic features and/orthbse which are most -likely to vary from case to
case, The format for these data is as follows:

| NN L DATA(L) DATA(L+1)...DATA(L+4) (12,14,5F12.0)

where: NN is the card word count, i.e., the number of data items on the card
to be inputted, columns 1 and 2; NN must not exceed 5. I is the location or
identifying number of the first date item on the card columns 3 ~ 6 right
adjusted. DATA(I+i) represents the various data items on the card, columns
7-18, 19-30, 31-42, L43-54, and 55-66, in floating point format. The locations
or 1dentifying numbers for the various date and control items are listedbelow
along with definitions and other pertinent comments; note that data locations
not assigned data are implied to be intentionally left blank and/ornotinputted:

Iocation Item Description
1 R Rotor tip speed, ft/sec.
2 R Rotor radius, ft.
3 p Air density, 1b-sec2/fth.
L 8y Speed of sound, ft/sec.
5 b Number of blades.
6 e Nondimensional offset distance of start

of deformable and/or deflectable portion
of rotor blade, e/R.

7 B Tip loss, used to define equivalent mo-
mentum area and three-dimensionality
corrections to computed two-dimenslional
airloads near the blade tip.



Location Item
8 : NSEG
9 Ay

10 NF
11 € F
12 Ais
13 Bls~
14 8. 75
15 A

16 \'j
17 o

Description

Number of blade segments used to define
spanwise variable arrays.

Azimuth increment useéd in the numerical
integration of the dynamic equations,
deg. (See'section on general informa-
tion for efficient program usage.)

Number of "flap trials", i.e., maximm
number of rotor revolutions for which
the blade time-history will be computed
in an attempt to obtaln convergence to
periodicity. If a transient response is
desired for only & portion of one rotor
revolution the program will compute a
time-history solution for any nonzero
fractional Nﬁ value inputted. An lden-
tically zero value will cause the time-
history solution tobe by-passed entirely.

Flepping tolerance to within which the
aeroelastic/dynamic responses must repeat
on successive revolutions in order for
the motion to be considered converged to
periodicity. The tolerance applied to
lead-lag motion is equal to 5eF.

Longlitudinal cyclic pitch, coefficient
of minus cosy term in Fourier expansion
of blade control pitch angle, deg.
Iateral cyclic pitch, coefficient of
minus siny term in Fourier expansion of
blade control pitch angle, deg.

Blade collective pitch angle as defined
at the 75% radius, deg.

Mean rotor inflow ratio.
Forward flight velocity, kts.

Rotor solidity (= be/mR).
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Iocation

18

19

20

21

22

23

2L

25

tem

item

A

cdg

(Control)

N

cut-out

(cg)

Ay,

cut-out

01

print

Description

Increment added to all values of ey
obtained from tabulated airfoll data or
from the analytic NACA 0012 data. Alr-
foll date generally correspond -to smooth
wind tunnel models and Acg, is often
used to adjust for the higher drag of
production blades; a commonly used value
of Acdo is 0.002.

Make greater than zero (1.) for first
case or when new blade modal data are
to be inputted. Program automatically
sets this control number to (-1.) after
each loading of modal data.

Number of blade segments, starting at
inboard end and defining the cut-out
region, for which the 1lift and moment
coefficients are set to zero.

The drag coefficient used on the first
Néut—out segments.

Built-in linear blade twist angle; 1i.e.,
difference between tip and root built-in
angles, positive when tip angle is
greater (L.E, up) than root angle, deg.

Azimuth increment used to present printed
output of various pertinent aerodynamic,
dynamic and elastic load distributions

as well as aeroelastic responses and
stresses, deg. This input quantity
should be an integral multiple of loca-
tion 9, deg.

"Direct" value of pitch-flap coupling
(= Ae/AB). A nonzero value will sup-
press a calculation of this quantity

from the inputted pitch-horn/push-rod
geometry,

Pitch-lag coupling (= ae/A8).



Ioéation

26

27

28 .

30

31-3k
37-39
4o-42

43

Item

N

ﬁfl

Description

Viscous lag damper coefficlent, ft-l1b-
sec,

Blade chord if chord is constant,
otherwise omlt, ft.

Number of flatwise bending modes to be
used (4 max).

Number of edgewise bending modes to be
used (3 max).

Number of elastic torsion modes to be
used (3 max) (note that the total num-
ber of dynamlc degrees-of-freedom is
limited to 10. Thus, if the articula-
tion degrees-of-freedom, B and/or §,

are used, or if the rigid feathering
d.o.f. is invoked, NFM, NEM and N will
be automatically changed to keep the
total degrees-of-freedom to no more than
10.).

Flatwise modal frequencies, nondimen=
sional with respect to (), in-ascending
modal order.

Edgewise modal frequencies, nondimen-
sional with respect to 2, in ascending
modal order.

Torsion modal frequencies, nondimen-
sional with respect to (), in ascending
model order.

Second harmonic cyclic pitch coefficlent
of minus cos 2y in Fourlier expansion of
blade control pitch, deg.

Second harmonic cyclic pitch coefficlent
of minus sin 2y in Fourier expansion of
blade control pltch, deg.



Iocation

45
L6

W7

ko

50

51

100

Item

(Control)

(Control)

(Control)

(GJ)root

Keroot

(Control)

Description

Acceleration due to gravity, ft/sec2; a
negative value implies inverted flight.

Make nonzero (1.) if airfoil data for a
nonsymmetric airfoil are to be used.

Meke nonzero (1.) if the total (transi-
ent) time-history is to be outputted;
i.e., responses calculated before con-
vergence to periodicity is obtained.

Meke nonzero (1.) if the modal responses
and hub shears and moments are to be
(negative) Fourier analyzed after peri-
odicity has been obtained.

Torsional rigidity at the blade root,
1b/£t°.

Torsional spring connecting root ofblade
to fixed structure to represent control
system flexibility, ft-1b/rad. A non-
zero value will automatically introduce
the rigid-body feathering degree-of-
freedom as an addition "torsion mode'".
Note that this "mode" will inherently
couple with the NTM normal elastic tor-
sion modes at frequencies both below and
above the inputted torsion frequencies
(locations L40O-42); hence, a smaller
integration intervel will generally

be required.

Make nonzero (1l.) to simplify the numer-
ical spanwise integration technigues
from the nominal trapezoidal rule to
rectangular (Bulerian) form. Rectangu-
Jar integration is effected by setting
the quadrature numbers used for spanwise
integration equal to the inputted seg-
ment lengths (loc. (100-11k4)). Usage of
this optlion is recommended for blade




Location Ttem Description

configurations with significant
discontinuities in spanwlse properties
(e.g., counterweights, tip weight, step
twists, ete.).

52 (Control) ‘Make nonzero (1.) to output modal
integration constants used in the
eigensolution and, to a limited extent,
in the time-history solution.

53 (Control) Make nonzero (1.) to load prepunched
(vorticity) induced velocity distribu-
tions.

54 (Control) Make nonzero (1.) to use the induced

velocities loaded as per location 53.

55 o Shaft angle of attack, deg. This input
item serves a dual role: when variable
inflow is used (either vorticity induced
or Glauert momentum) o is used to define
Apam* Also, when a major lteration is
to be performed (nonzero location 60)
and when trims on propulsive force are
deactivated (zero location 59) the pro-
gram will trim to this inputted shaft
angle,

56 Lreq Requested value of lift to be used in
major iteration, 1b.

57 FFreq Requested value of propulsive force to
be used in major iteration, 1b.

58 €ript Tolerance on lift for major iteration,
1b. A zero value deactivates trimming
on 1lift,

59 S pp Tolerance on propulsive force for major

iteration, 1b. A zero value deactivates
trimming on propulsive force. The auto-
matic trim calculation (major iteration)
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TIocation

60

61

62

63

6l

65

67

68

Ttem

req

req

Description

must trim either to-a required propulsive -
force or to a required shaft angle of
attack; therefore a deactivation of
trim to propulsive force automatically
directs the trim calculation to trim to
requested shaft angle, location 55.

Maximum number of major iterations to

be made in an attempt to achieve trim.

A zero value will deactivate the major
iteration; a negative value will acti-
vate a stall avoidance calculation if,
when attempting to trim, the rotor be-
comes stalled. (See section on general
information for efficient programusage.)

Built-in precone angle, deg. An identi-
cally zero value denotes a rotor blade
articulated in flapping; similarly, a
finite nonzero value signifies a blade
nonarticulated in flepping.

Requested value of pitching moment for
major iteration, lb-ft (positive nose

up).

Tolerance on pitching moment for major
iteration, 1lb-ft. A zero value deacti-
vates trimming on pitching moment.

Requested value of rolling moment for
major iteration, lb-ft (positive port
side up).

Tolerance on rolling moment for major
iteration 1lb-ft. A zero value deactives
trimming on rolling moment.

Initial condition on articulated flap-
ping angle, rad.

Tnitial condition on (nondimensional)
articulated flap angle rate.



Tocation Ttem Description

69 ) Initial condition on articulated lead-
lag angle, rad. (positive forward).

Initial condition on (nondimensional)
articulated lead-lag rate.

o %

7O

Built-in prelead angle, deg. An iden-
tically zero value denotes a rotor

blade articulated in lead-lad; similarly
a finite nonzero value signifies a blade
nonarticulated in lead-lag.

T2 )

73 (Control) Make nonzero (1.) to harmonically
analyze and output harmonics of flat-
wise stresses.

T4 (Control) Meke nonzero (1.) to harmonically
analyze and output harmonics of edgewise
stresses.

75 (Control) Meke nonzero (1.) to harmonically
enalyze and output harmonics of torsional
stresses.

76 (Control) Meke nonzero (1l.) to bypass the eigen-
solution.

TT 1/ Initial condition on rotor azimuth, deg.
This value, like all inputted initial
conditions, is likewise used to define
the loadings on the blade about which
linear perturbations are to be taken in
the eigensolution.

78 (FCR) Factor in momentum inflow equations to
account for dual (coaxial) rotor opera-
tion:

Cp

(FOR) Eoju+\®

A= xram -

Note that CT in the above equation is
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Location

79

80-82

83

Ttem

(Control)

Vo’ Vic, 1

SR

8

Description

the usual thrust coefficient as defined
for a single rotor. An identically zero
value of (FCR) defaults to a value of
2.; a value between 1. and 2, will de-
note a coaxial rotor operating some-
where between hover and high speed
forward flight.

Generalized Glauert (momentum derived)
variable inflow option. A zero value
deactivates usage. A value of 1.

causes the inputted induced velocity
components to be used, as inputted; a
value of 2., causes the inputted values
to be used initially, and then varied
in trim calculations in place of control
angles; a value of 3, causes the control
and shaft angles to be fixed and the
induced velocity components to be varied
only to satisfy momentum equations in
any requested major iteration. If the
value is 1., the induced velocity com-
ponents will be varied to satisfy mo-
mentum considerations in addition to

the usual trim calculation,

Initial conditions on the "momentum"
induced velocity components comprising
aGlawert-like variable inflow descrip-
tion. Note that the "vorticity" vari-
able inflow (controlled by locations 53
and 54) and the momentum variable inflow
can be used separately or simultaneously.

Sample rate for Transient Spectral
Stability Analysis (TSSA). (See Appen-
dix ITIT for a discussion of this tech-
nique.) Every (SR)'th point in a
transient time-history is saved for use
in a TSSA. A zero value bypasses the
TSSA.



Iocation Item Description

8L4-86 (Control) Channel selection for each of three
available for the TSSA. The channels
available are: 1-4, flatwise bending
modal responses; 5-T7, edgewlise bending
modal responses; 8-10 torsion modal
responses; l1ll, articulated rotor flap-
ping; 12, articulated rotor laggings;
13, 14, and 15, blade tip vertical, in-
plane and torsion deflectlons, respec-
tively.

Lower bound of frequency band chosen for
TSSA nondimensional with respect toQ.

88 Wy Upper bound of frequency band chosen for
TSSA nondimensional with respect to .

89 : (Control) Initial estimate of percentage of total
transient data used in each time dis-
placed data sample block in TSSA.

90 (Control) Number of transient (time displaced)
Fourier coefficient calculations made
to establish modal damping in TSSA;
maximum value is 200.

91 N Number of desired resonant frequencies
to be extracted from frequency band
defined by locations 87 and 88.

92 (Control) Resonant frequency identification
criterion. Make (0., 1.) to identify
resonant frequencies using criterion
of (maximm Fourier Transform amplitudes,
maximum F,T, amplitudes + deletion of
"image" frequencies). Note that image
frequencies result from the Floquet-like
response characteristics of rotors in
forward flight.

o4 {vee Critical (viscous) damping ratio used to

approximate structural damping in edge-
wise bending modes.

105. ..



Location

97

98

100-114

115-129

130-1L4

106

Ttem

elequ

(Control)

(Control)

AX

Description

Linear equivalent blade (nonlinear)
twist angle defined similar to location
22, deg. A nonzero value for g is
required to use the inputted noniggéar
twist arrays and is used to calculate
that portion of the aerodynamic inflow
velocity at the 3/k chord position, Uy
accruing from radial flow and twist.

Meke nonzero (1.) for stress calculations -
using the mode deflection method. Zero
value defaults to force integration
method.

Iocation used to end a case or series
of cases. Make (+Ll.) to end the ILoader
Format data block for the case defined
by the Ioader data and load additional
cases at the conclusion of that case.
Meke (-1.) to end the Loader data and
read no further cases. Inboth instances
the word count, LL, (see beginning of
this section above) should be (-1).
Note:; +this entry must appear singly on
an input card, and that card must be the
last card for the case.

Nondimensional blade segment lengths,
in order from root to tip, maximum of
15 values, starting from the offset lo-
cation, .Accuracy is generally improved
if the last segment is small (<0.03).

Mass of each blade segment, lb-sec?/ft.

Aerodynamic built-in nonlinear twist
angle distribution, deg. Since collec-
tive angle is defined at the 75% span
location, Op, should have a zero value
at 75% span. Should the structural
twist angle distribution differ from
eBa’ their appropriate data must be



Location

145-159

160-17k

175-189

190-20k4

205-219

220-234

235-2kh9

250-264

JTtem

T/M

210

10

PFI

yioc/h

Description

loaded into locations 690-70L4; otherwise,
Or  will be used for both aerodynamic
and structural epplications. Nonlinear
twist distributions will be used only
if a nonzero velue is inputted into

e *
location 97, 1equ
Blade chord at center of each blade
segment (use for nonconstant chord
blades only), root to tip, ft.

Constents relating (nondimensional)
flatwise second derivative to flatwise
stress (= Ec/R)p, evaluated at center
of each segment, root to tip, psi.

Constants relating (nondimensional)
second derivative to edgewise stress
(=Ec/R)E, root to tip, psi.

Constents relating torsional moment to
torsional stress, root to tip, in~°.

Chordwise mass radii of gyration of
blade segments about elastic (reference)
axis, root to tip, nondimensional with
respect to R.

Thicknesswise mass radii of gyration of
blade segments about axis perpendicular
to chord line and through the reference
axis, root to tip, nondimensional with
respect to R.

Area radii of gyration about elastic
axis, root to tip, nondimensional with
respect to R.

Distances from elastic axis forward to

airfoil quarter chord position, root to
tip, nondimensional with respect to R.
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Lbcation ITtem
265-279 . ?iocG
280-283 .- Gy
286-289 Gy
292-294 f Gy
*
295-297 Dy
298-300 ‘ qej_
*
301-303 Yoy
600-61L4 (I/c)F
615-629 (I/c)E
630-639 (Control)

108

Deécri‘tion

Distance from elastic axis forward to
airfoil sectlion mass centers, root to
tip, nondimensional with respect to R.

Initial conditions on i'th flatwise
bending mode deflections.

Initial conditions on i'th flatwise
bending mode (nondimensional) rates.

Initial conditions on k'th edgewise
bending mode deflections.

Initial conditions on k'th edgewise
bending mode (nondimensional) rates.

Initial conditions on j'th torsion mode
deflections.

Initial conditions on j'th torsion mode
(nondimensional) rates.

Section modulii for flatwise bending,

root to tip, in3. Note that the pro-

ducts of (I/c)p and Ky (locations 160-
174) must equal the bending stiffness

distribution, EI/R.

Section modulil for edgewise bending,
root to tip,-in3. See remarks above
for flatwise bending section modulii.

Stress selection number for each of (at
maximm) 10 channels whose time-history
data strings are saved and used for
automatic plotting. Value is determined
by formula: J x 100 + N, where J =
(0.1,2,3) as stress is (flatwise, edge-
wise, torsion, flexbeam torsion) and

N = segment number. (Input locations
provided, but option inoperative.)



Iocation

6L0-649

660-6Th4

675-689

690-T0L

T705-T19

720-734

735-Thk

Item

'~ STRSCALE

B

EBy

Aoy

FB

Description

Vertical axis scaling for the automatic
plotting of each stress channel selected
in locations 630-639, psi x 103/in.
(Input locations provided, but option
inoperative. )

Torsional stiffness (to be multiplied
by twist rate.squaﬁed), as defined in
reference L4, 1b-ft~.

Torsion to edgewise elastic coupling
stiffness (to be multiplied by twist
rate), as defined in reference 4, 1b-ft~.

Structural bullt-in nonlinear twist
angle distribution, root to tip if
different from serodynamic twist, deg.
See remarks above for serodynamic
built-in twist, location 130-1Lk.

Built-in (structural) twist angle
change per segment length distribution,
root to tip, deg. Note that this item
is a direct statement of the built-in
twist rate distribution, g'; if all
values of this distribution are inputted
as zero, the twist rate distribution is
computed internally using numerical
methods from the inputted twist angle
distributions, locations 130-1kk4 or
690-704, as appropriate.

Distances from reference (elastic) axis
forward to edgewise bending neutral
axls, root to tip, nondimensional

with respect to R.

Flexbeam plate bending stiffness dis-
tribution, 1lb-ft. Note that all items
in locations 735 through 824 are re-
quired only for & redundant analysis of
the torque-tube ( flexbeam span of bear-
ingless rotor (CBR) configurations) (see
location 991).
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Location

TH5-T5k

755-T6k

765-TTh

T75-784

785-T9k4

795-80k

805-814

815-82k

957

958

110

Ttem

CIpp
Crp
(ELy) gy

(EIZ)TT

(371045) o

(T/¢)Foy

(I/C)ETT

Description

Flexbeam torsion (St. Venant) stiffness
distribution, 1lb-ft2,

Flexbeam section width (chord) distri-
bution, ft.

Torque tube flatwise bending stiffness
distribution, lb-ft2.

Torque tube edgewise bending stiffness
distribution, 1b., ft".

Mass of each torque tube segment whose
span is defined by location 100-109, 1lb-
sec?/ft.

Distances from reference axis forward to
torque tubemass centers whosemasses are
given in locations 785-794, nondimensional
with respect toR. (Input locations
provided, but quantity is not used.)

Section modulii for torque tube flat-
wise bending, in3. (Input locations
provided, but quentity not used.)

Section modulii for torque tube edgewise
bending, in3. (Input locations provided
but quantity not used.)

Height of positively thrusting rotor
from ground or wind tunnel floor for
purposes of evaluating Heyson correc-
tions to rotor angle of attack (see
Ref. 11), ft.

Height of wind tunnel test section for
purposes of evaluating Heyson correc-
tions, ft. Note that zero values for
the wind tunnel test section dimensions
implies that ground effect corrections,
rether than wind tunnel wall corrections,
are to be made,



.Iocation

959

975
976

o7

978

979

980

Item

NDEL3I

NDEL30

Y10pg

Width of wind tunnel test section for
purposes of evaluating Heyson correc-
tions, ft.

Case number,

Built-in elevation angle of push-rod
attachment point, measurable when 6 =

75
0, deg.

Segment number of inboard attachment
point of pitch input structural members
(Pitch horn, feathering cuff or torque
tube) to blade spar.

Segment number of outboard attachment
point of pitch input structural member
to blade spar. Note that if this struc-
tural element is attached to the blade
spar at a single point (cantilevered
configuration) NDEI3I and NDEL30 must
both be inputted with the same appropri-
ate velue. For bearingless rotor (CER)
applications NDEIL30 serves the addi-
tional function of defining the outer
1imit of the flexbeam; this limit is
taken as the inner boundary of the
NDEL30*th segment.

Radial location (blade station) of pus.-
rod to pitch input structural member
attachment point, in,

Iocation forward of feathering axis of
push-rod to pitch input structural mem-
ber attachment point, in. Note that
input items 977-980 together with the
inputted modal data provide the geomet-
ric data from which pitch-flap, pitch-
flat and pitch-edge coupling are calcu-
lated. These calculations are bypassed
if either of locations 978 or 980 are
inputted identically =zero.
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Iocation

981

982

983

98l

985

986

987

989

FB

k"'FB

(Control)

(Control)

KSZS(KSF)

(Control)

Description

Segment number of innermost end of the
feathering flexure; defaults to 1.

Built-in twist angle of the flexbeam,
positive leading edge up at outboard
end of flexbeam, deg. Note that eBFB
is defined relative to the inputted
twist angle distribution, which in turn
1s defined for zero collective angle.

Average torsional stiffness of the flex-
beam 1b-ft2.

Equivalent or critical torsion stress
coefficient for flexbeam; i.e., stress
per unit average torsion strain as de-
fined by total flexbeam twist, in-psi.

Meke nonzero (1.) to include the "wob~
ble" mode for cantilever torque tube
configured bearingless rotors.

When finite snubber stiffnesses are
inputted (locations 987 and 988) the
stiffnesses are assumed to be aligned
(vertically and horizontally, torgue
tube flatwise and edgewise) as location
986 is (0., 1.)

Snubber vertical (torque tube flatwise)
spring rate, 1b/ft.

Snubber horizontal (torque tube edgewise)
spring rate, 1b/ft.

When the torque tube flexbeam redundent
analysis is invoked (location 991) the
torque tube is assumed to be in (tension,
compression) as location (989) is

(0., 1.).



Location

990

991

992

993

99k

995

996

Ttem
NbTT

(Control)

(Control)

(Control)

Description

Segment number of innermost end of
torque tube; defaults to 1.

Meke nonzero (l.) to activate the re-
dundant analysis option. When the
redundant analysis is activated, the
flexbeam and torque tube stiffness and
mass inputs, locations (735) through
(794), must be appropriately nonzero.

Used to welgh the effectiveness of non-
linear AETI bending excitation of torsion
over the flexbeam span; the effectivea-

ness is taken to be (100%, 0%, 100% (x)

pseudo~torsion mode shape as location

(992) is (0., 1., 2.).

Flexbeam aspect ratio parameter

(= %A/I.S(l-u)) to determine plate-
like deflection for torsion "pseudo-
mode". A zero value gives a rod-like

deflection shape.

Spring rate of rotational spring con-
necting outboard end of torque tube to
the blade spar about chordwise axis,
ft-1b/rad. A zero value implies zero
stiffness for pinned-pinned torque tube
configurationsand infinite stiffness for
snubbed configurations.

Spring rate of rotational spring connecte
ing the outboard end of the torque tube
to the blade spar about an axls perpen=
dicular to the chord line, ft-lb/rad
(see above).

Analytic (static) airfoil option. Make
nonzero (1.) to use the built-in analytie
approximation to the static NACA 0012
airfoil data.




11k

Location

997

998

999

1000

1001

Ttem

(Control)

8¥r389

K:plot

(Control)

a0 75

Description

Unsteady airfoll data option., Make
nonzero (=1.) to use the synthesized
unsteady airfoil data technique described
in reference 10. This can be used with
either the explicitly inputted alrfoll

‘date or the built-in analytic NACA 0012

static airfoll data. For nonzero values
greater than unity, the "cutoff Mach
number" (Mach number above which the un-
steady data is disregarded in favor of
quasi-static data) is taken to be the
inputted value minus one (1.) rather
than the built-in default value of 0.6.
However, only nonstanderd cutoff Mach
numbers between 0.1 and 0.95 are
accepted.

Azimuth increment used to generate
punched card output to be used as input
data to UTRC program F389 for computing
variable inflow. This option is by-
passed with a (0.) input value. A
description of the format of these out-
put punched cards is contalned in
reference 12.

Scale for automatic plots of wvarious
time-history data strings, see locations
84-86 and 630-639. (Input location pro-
vided, but option is inoperative.) This
option is currently inoperative but
would be bypassed with a (0.) input
value, when operationsl.

Make nonzero (1.) to activate usage of
the tabulated time-histories of lncre-
mental control angles.

Number of abscissa-ordinate point pairs
used to define time-history of Ag ,-(t);
calculation of this time-history'izsby-
passed with a (0.) value.



Location Ttem Description

1002-1050 A6 75 Table of A® .75 absclissa-ordinate pairs;
) U(Ae 75) = deSO, U(t) = 8Sec,

1051 NAAi Number of absclssa-ordinate point palrs
s used to define time-history of a3 (t);
zero value bypasses calculation.

1052-1100 AAls Table of AAp_ abscissa-ordinate point
pairs; U(A183 = deg; U(t) = sec.

1101 NABI Number of abscissa-ordinate point pairs
s used to define time-history of ABl (t);
zero value bypasses calculation,

1102-1150 ABy Table of AB; _ abscissa-ordinate point
s pairs; U(les = deg; U(t) = sec.

Last Card for Block II (Loader) Data:

-1 99 +1. (12, 14, F12.0)

I +- other cases follow

-: preceeding data defines last case

ITI. Blade Mode Shape Data

Included in this date are the radial distributions of the blade
(uncoupled) flatwise, edgewise and torsion normal mode shapes and their
derivatives., These quantities must generally be provided from an external
source such as United Technologies Corporation program E159 or an equivalent,
in the following punched card format: '

( NFM NEM ﬁm NSEG (b1h)

subsequent cards:
F(I) F(I+1) F(I+2) F(I+3) F(I+L) (F18.0,L4F12.0)




where: NFM, NEM, and NTM are, respectively, the numbers of flatwise bending,
edgewise bending and torsion normal modes whose mode shapes and derivatives
are to be inputted. NSEG 1s the number of blade spanwise stations for which
the inputted modal data are defined. F(i) are each of the below listed modal
functions (defined at the i'th spanwise stations) and I must be either 1, 6
or 11 reflecting the requirement of five entries per card until NSEG entries
are made for each F function inputted. The modal functions must be loaded
in the following order:

Yo . (NSEG values, root to tip)

. . ( no o " ] " )

Yy (NFM flatwise modes)

V1 (NEM edgewise modes)

(NTM torsion modes)



IV. Variable Harmonic Inflow

If location 53 of the Ioeder block of operational date is nonzero, the

following block of variable harmonic inflow is loaded in:

card 1. — N
s (NHARML (13)
card #2: ,
/ x1.AM0(T) (F14.0)
card. #3:
{ x1AMC(I,1) XIAMC(I,2) ... (5F1L.0)

card #3 + (I\lHARML/S):

/XLAMS(I,l) XIAMS(I,2) ... (571k4.6)

Subsequent cards repeat the pattern wherein I, the spanwise station index,
varies from 1 to NSEG. NHARML is the number of harmonics of inflow to be
loaded, and XLAMO(1), XLAMC(i,n) and XIAMS(i,n) are, respectively, the zeroth,
n'th cosine and n'th sine components of harmonic inflow at the i'th radial
station, wherein a positive Fourier series 1s assumed. The inflow is defined
positive up and has the units of ft/sec.

V. Multiple Case Runs

The above described data set-up defines the correct ordering of required
data blocks for & general case. When multiple cases are run the second and
subsequent cases utilize most of the data inputted for the first case. The
following rules &apply to the running of multiple cases:

1. Airfoil data is loaded only for the first case; all subsequent cases within
the run use the same tabular data, if analytic data is not used. ~
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2, Only those items within the operational (Loader) data which are to be
changed from case to case need be inputted.

3. Ttem 99 of the operational data controls the running of subsequent cases;
a (+l.) value causes a subsequent case to be loaded whereas a (-1.) value
terminates the computer run after the current case.

4., Unless otherwise specified (by a +l. value for operational data item 19)
the inputted modal array data block is used for all cases within the run and,
hence, no subsequent input of this data need be made,

5. Similarly, unless otherwise specified (by a +1. value for operational
data item 53) the inputted harmonic variable inflow data block is used for
all cases within the run and, hence, no subsequent input of this data need
be made.

6. Operational data items 19 and 53 discussed above are both automatically
set to zero at the conclusion of the data input for every case.

7. Terminal conditions on the blade azimuth angle, item 77, and on the
degrees-of-freedom, items 67-70, and 280-303, for any case are carried over
as initial conditions on these quantities for the subsequent case. Thus,
for some applications, e.g., investigations of unstable responses, it would
be appropriate to reinitialize these items on the subsequent cases.

General Information to Facilitate Operation of Program
And Improve Efficiency

Aside from considerations of the actual aerocelsstic parameters describing
the blade configuration, which are covered in the above sections, additional
attention should be paid to the mechanics of obtaining efficient numerical
solutions of the dynamic equations. In this regard, there arise two basic
areas of concern wherein this section should be of assistance. The first of
these areas is the proper selection of parameters for efficient temporal
numerical integration of the dynamic equations (flapping or minor iterations)
and the second is the proper selection of parameters for effecting & satis-
factory rotor trim (major iteration). The following subsections provide
information for making proper parameter selection in each of these areas,

Temporal Numerical Integration ~ As is discussed in Appendix I temporal
integration of the higher differentiated response variables to obtain the
lower ones is achieved in the GMOO progrem using a variant of the Adams inte-
gration algorithm (see equations I.l and I.2). The selected algorithm is




defined by means of the azimuthal dntegration step size, Ay, and the
integration frequency, ®.

The integration step size should be an integral divisor of 360; a proper
choice depends on the maximum coupled frequency inherent in the various
aeroelastic responses. A reasonable upper limit for Ay is 45 givided by the
maximum such frequency in per rev. Values of Ay greater than this upper limit
will compromise the integration accuracy and, for sufficiently large values,
will cause the computed responses to develop 'numerical" instabilities. As
& corollary, a check on any response which is predicted to be unstable by the
analysis, is to rerurnt the case with a reduced integration step size to test
for the possibility of the unstable response being merely & numerical insta-
bility.

For each response degree-of-freedom a different integration frequency,
5, is used in the integration algorithm; this frequency is, for each of the
elastic modes, the respective inputted natural frequencies (locations 31-3l4,
37-39, and 40-42), The usual pendular frequencies of a rotating, hinged,
rigid beam are taken as the integration frequencies of the flapping and
lead-lag degrees-of-freedom. In addition to defining modal stiffnesses and
integration frequencies, the inputted frequencies serve yet another purpose.
As noted above, the proper value of integration step size, Ay, varies
inversely with the maximum modal frequency. Thus, run times (caused by
reduced step size) will significantly increase as any one modal frequency
increases. Since any degree-of-freedom exhibiting a large natura&*frequency
tends to respond quasi-statically, i.e., as if the acceleration (q ) term
were negligible, a reasonable approximatiog*to the response calculation is
to avoid the numerical integration of the q term entirely and treat the
response quasi-statically. This option can be invoked for any such high-
frequency mode by inputting the appropriate frequency negatively; & negative
sign will not affect the proper usage of the frequency in the calculation of
the dynamic equations., ©Note that this optional response calculatlion can be
invoked Singly or in combination for any of the elastic modal responses,
(negative values in any of locations 31-34 and 37-L42).

Hub FPorce and Moment Trim - Operation of the trim'or major iteration feature
of the program is controlled by input locations 55 thru 60, 62 thru 65 and,
for some applications, 79. The mein control for the major iteration 1s loca-
tion 60, the number of major iterations, NMI' A zero value causes the major
iteration feature to be completely deactivated. On the basis of past usage,
8 reasonable range for this input appears to be from 5 to 10, depending on
the tightness of the convergence tolerances selected and the "goodness' of
the initial guesses on the control parameters. Convergence of the major
iteration is adversely affected by any lack of convergence of the responses
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to periodicity within each trim iteration and by incursion of the rotor into
a significantly stalled flight regime. Note that a negative value of NMI
will activate a stall avoidance calculation wherein the controls will be .
perturbed to reachieve unstalled flight rather than to achieve the prescribed
trim condition. Should a major iteration fail to converge within any one run
the last used control angles and initial conditions on response variables are
generally available in output punched card form and/or partially in the out-
put printed records of each major iteration (see Appendix III) for use in
subsequent major iterations.

The trim iteration is operationally flexible as to what hub loads it
will drive to requested values. Generally, the various requested hub loads,
1ift, propulsive force, pitching and rolling moment are activated in turn
by specifiying nonzero values for each of thelr respective tolerances. More
specifically, the following table describes the optional combinations of hub
loads and rotor shaft angle available with the GLHOO trim capability:

TABLE IT

SUMMARY OF OPTIONAL BASTIC TRIM COMBINATIONS

Option| Lift |Prop. Force | Pitch. Momt. | Roll Momt. 9.75R Ais Bis o
1 S U U U v F F | s,(V)
2 S S U U v F 3
3 U U S S F v Vv { s,(V)
L S U S S v vV | V|]s,(V)
5 S S S S v V|V v
6 U U S U F v F | s,(V)
7 S U S U v v F | 8,(V)
8 S S S U v V]|F v

where: F: Control parameter kept fixed
V: Control parameter varied
S: Trim parameter specified and trimmed to
U: Trim parameter unspecified and ignored
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Note that for each option available, the individual trim parameter is
activated by inputting a positive, nonzero value for the respective parameter
tolerance. For each option the trim calculation trims either to the specified
propulsive force or the inputted shaft angle, ag (location 55) as the propul-
sive force tolerance, epp, is finite or zero, respectively. A reasonable
cholce of tolerance values for the hub force and moment loads can be obtalned
from considerations of the helicopters inertis properties and acceptable de-
viations of the load factor from unity, and of the pltching and rolling accer-
ations from zero. S :

The trim calculation can be also used in conjunction with the Glauert
variable inflow. ILocation 79 controls the usage of this simplified form of
variable inflow. A variety of trim calculation operations are achieved when
this control location is nonzero., If this control option is 1., the Glauert
varieble inflow induced velocity components V,, Vic, and V)4 (locations 80-82)
would be varied in addition to those parameters shown in Table II to effect
momentum balances in thrust, pitching moment, and rollling moment as well as
the specified trim, If the control option is 2., only the velocity components
would be varied (instead of the control angles, 8, 75R? Ay g, 8nd B, ), but in
an analogous manner. If the control option is 3., the trim calcuiation
would again only vary the velocity components, but to achlieve momentum balance
only, with no specified trim.
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APPENDTX ITI

PROGRAM G400 OUTPUT DESCRIPTION

The complete printed output generated by the G400 program can be
classified into the following five major categories:

I. IListing of Input Data
ITI. Parameters Calculated from the Input Data
ITI. Results of Solution Part I - Eigensolutions
IV. Results of Solution Part IT - Time-History Solution
V. Results of Solution Part III - Transient Spectral Stability Analysis

This appendix will describe the pertinent output pages associated with each of
these categories. It should be noted that while output will always be generated
for the first two categories, output for the remaining categories depends upon
the optional utilization of solution parts I, II, and/or IIT. The subsections
which follow describe, in turn, the details of each of these five categories.

Listing of Input Data

Output in this category includes a listing of the static airfoil data (if
any is inputted), a descriptive listing of the "inertia, elastic, geometric
and other operational" (Loader Format) data, and a listing of the harmonic
variable inflow: blocks I, IT, and IV, respectively, of the input dats des-
cribed in Appendix II. If static dirfoil deta is inputted, then a listing of
this data will be outputted for Cys C4 and Cmc/ each with the format shown
in Sample Page 1 where each column represents data at one Mach number. With-
in each columm the first line gives the number of angle-of—attack/aerodynamic
coefficient pairs defining the functionality; the second line is the Mach
number, and the ensuing line pairs are the angle-of—attack/aerodynamic coeffi-
cient palrs, where the angles-of-attack are in degrees. This output closely
follows the input format described in Appendix IT.

A description of the Loader Format data output is omitted herein since
this output merely duplicates the description already given in even greater
detail in Appendix ITI. In Sample Page 2 is shown the listings of the inputted
harmonic variable inflow, both by harmonic components and by azimuthal varia-
tion for each of the (maximum of) fifteen blade segments. As with the input
format, the inflow is defined positive up, has the units of ft/sec and a
conventional positive Fourier series representation is used.
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XXe XXXX
dXXXRXXX

XX o XXXX
S XXXXXX

YXoX¥XX
fXXAXRR

X% XAXX
o XXXXXX

YKo XXXX
e XXXXXX

XXeXXXX
dXXXXXX

XX o X

o XXXX

¥X o XXXX
fXXXXXX

XA XXAX
XXXXXX

XX e XXXX
o XXXXXX

XX o XXXX
XXXXXX

XX o XX XX
WAXXXAX

XX o XXXX
XXXXXX

XX e XXXX
fXXXXXX

XX o XXXX
CXXXXXX

X¥oX

X XAXX

XX XXXX
e XXXYXX

XX XXXX
e XXXXXX

XX e XXXX
«XXXXXX

XX XXXX
«XXXXXX

¥XaXXXX
fAXXAXX

XX XXXX
CXXXXXX

YXeXXXX
e KXXXXX

XX e XXRX
P XXXXXX

XXoX
e XXXX

XXoeXXXX
CXXXXXX

XX XAXX
W XXXXXX

XX o XXXX
XXXXXX

YXaXXXX
CKXXXXX

XXeXXXX
aXRXXXAX

XX XXX¥
dKXXXXX

YK XXYX
e KXXXXX

XXaXXXX
JAXXXXX

XXX
cAXAX

AXe XXXX
e XXXXXX

XX AXAX
e XXXXXX

XX oX¥XX
XXXXXX

XXeXXXX
e XXXXXY

XX o XX XX
XXX XX

XX o XX XX
SXXXX X

FXonX XX
P KXXX XX

Lo XX XX
aXAXXXX



et

INPUTTRD VARIABLE INFLOw DISTPIuUTIONS (VUTPUT FKO! PPOGRAM F38G Oxk EAUIVAIFNT), FPS

rARMUNIC COE$ FICIENTSS

SEGe &
VLAMD

VLAMA
ViLamMi

VLAMA
VL ambs

VLAMA
vLaMB

v

X

NN

AX XX

AX o XX
KX, XX

KXo XX
AX XX

AX XX
AX XX

AX XX
AX XX

AZIMUTHAL vARIATION

5EGe #r U =

PSL

0.
XKeo
XXo

KXR o

1

XX XX
AX XX
KXo XX
AX XX
AXXA
KX XX
KX ¢ XX

LAMBUA (X(J) ,PST)

2 3 4
XX o XX AAXX XXo XX
XX XX  ARGXX XX e XX
AR o XX AKe XK ¥R XAX
XX XX KK o XK XXaXX
XAo XX AKo XA XX XX
XA ¢ XX ARe XX XX XX
X& o XX KA XX XX o XX
XA o XX KRo XK XX o XX
KA o XX AKX XX XX XX

2 3 )
XA o XX AKo XX XX XX
XX o XX AXe XX XX o XX
AN e XX AR XX XX o XX
XX o XX AR XX XX XX
XAo XX XX XX XXo XX
XK o XX AKo XX XX e XX
XA o XX KAoXX XX o XX

AXe XX

AN XX
A XY

AKX XY
XX o X2

RX o XX
AXo XY

AXSYX
AKX,

AK YN
AXo XX
XXeX2
XX XX
AXeXn
AR XX
KXo XX

XX ¥X

¥YXoXX
YK, XX

XX ¥X
XX o XX

T XX XX

XX XX

XX4 XX
XX o XX

¥Xo XX
XX XX
XXo XX
XX o XX
XX o XX
XX XX
XX o XX

XX o XX

XX o XX
XX e XX

XXeXX
XKo XX

XX o XX
XX o XX

XX o XX
XX o XX

XXo XX
XX o XX
XX o XX
XX o XX
XX o XX
XXo XX
XX o XX

XxoX¥

XX o XX
XX o XY

XX o XX
XX o XX

XX o XX
XX o XX

XX e XX
XX o XX

Xxo XY
XX o XX
XX o XX
XX e XX
XX o XY
XX o XX
X% o XX
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XX oKX

XK XX
XKo KX

Xao KX
XX o XX

XXo XX
XXoXX

XK oKX
XKo KX

XaoRX
XAo KX
Xao kX
XK o XX
XKoo KX
XX o kX
XXo kX

RaMLAN ¢ ( VLAYO(J) + SUNMIVLAMA(L 1901) ¢COS(iiePS ) +

10
KK o XX

XXoXA
KXo XA

XX o XA
XXo XX

KXo XX
XXo XA

KK XX
XLo XA

v

KXo XA
AX o XN
KA XX
KXo XX
KXo XX
KXo XK
KXo XX

VLARB (JeN) sSINGHOPSE) ) ) /OMEGA=D

1;
AXo XX

AX o XX
AX XX

AX o XX
AX XX

AX e XX
AX XX

aX, XX
AX XX

11

XX, XX
AXo XX
KXo XX
AX XX
KX, XX
AX XX
AN XX

12
XKo XX

XK o XX
XX o XX

XK XX
XA o XX

Khe XX
AL . XX

KXo XX
XK XX

2

AR o KX
XK o XX
XX o XX
XA+ XX
XXe XX
XX o XX
XA e XX

43
Ao XX

AK XX
KXo XX

KXo XX

AR XX

KXo XX
K& XX

KXo XX

AR XA~

3

KXo XA

- KR XX

AXo XA
AN XX
AKo AN
AKo XX
KXo XX

14
XX e XX

XX o XX
KXo XX

XX o XX
XX o XX

XX o XX
XX o XX

XXo XX
XXoX&

14

XX e XX
XXo XX
XXeo XX
XX o XX
XX o XX
XX o XX
XXe XX

AK. XY

KXo XX
AKX XX

AK o XX
AKoYX

AXo Xy
KXo XX

KXo XX
AR X

AXiXX
KX XX
KXo XX
AXoXa
AKX XX

- AKe XX -
-AK XY



Parameters Calculated from the Input Data

Sample Pages 3 and b4 list a variety of intermediate parameter calculations

whiéh, for the most part are directly applicable only to the composite
bearingless rotor. Sample Page 3 presents the matrices and vectors used to
define, respectively, the elastic bending characteristics of the torgue tube
and the inboard (snubber) end vertical deflection of the torque tube. For
each, a quadratic variation with pitch angle is assumed so that the total
bending stiffness matrix, FDEFL, and inboard deflection vector, 7Z5I, are
formed in the indicabted manner wherein the total blade pitch angle at the

75 percent span, TTHO, is taken in radisns. Furthermore, all the results out-

putted for these two quantities are nondimensional (see the superscripts sec-

tion of the IList of Symbols for the proper nondimensionalization). The matrix

FDEFL, duplicates matrix S, whose rows and columns are defined by equation
(108) in the text; vector 7z5I shares the same columnar dependence with matrix
FDEFL. Finally, at the bottom of Sample Page 3 are evaluations of FDEFL and
751, using the quadratic representations, at a pitch angle equal to the
inputted collective angle, 9.75R- Tt should be noted that the functionaliza-~
tions of these quantities to quadratic form is accomplished by msatching
exactly the quantities calculated with pitch angles equal to the collective
angles.

The first group of output parameters given in Sample Page 4 consists of
the (nondimensional) coefficients defining the nonlinear torsional stiffness
characteristics of the flexbeam; they correspond directly to the coefficients
given in equation (130a). Again the standard nondimensionalization is used.
The second group of output parameters on the sample page consists of the
quadratic functionality coefficients for the pitch-flat and pitch-edge
couplings and the angular motions of the torque tube relative to the flex-
beam at the juncture for each of the selected flatwise and edgewise modes.
The quadratic functionality on pitch angle duplicates that used for FDEFL and
751 described in the above paragraph. Note that RELMW and REIMV are calcu-~
lated only on the basis of an infinitely rigid torque tube and, hence, are
omitted when the redundant analysis option is invoked. The third group of
output parameters consists of the specialized elastic description of the
inboard end of a cantilevered torque tube (see Figure 6 and equation (83)).
The outputted spanwise distributions are the static flatwise deflection shape
(pseudo-flatwise mode) and its two (nondimensional) spanwise derivatives.

The fourth group of output parameters are the effective torsional springs
Kg1» Kgp» and Kgg, defined by equations (63b), (88), and (85), respectively,
and the flexbeam stiffness, GJ and Tkp , respectively. The units of the
springs are 1b-ft/rad and those of the stiffnesses are 1b-Ft2,

125.



92T

.TORQUE-TUBE BENDING STIFFNESS MATRICES AND SNUBBER ATTACHMENT POINT DEFLECTICN VFCTORS:

FODEFLUI4J) = FDEFLC(I,J)+ TTHO®(FDEFL1I(I,J)+ TTHOXFDEFL2(I,J))

251t

FOEFLO(I )

Z5I3tJ):

FCEFL1tI, J):

2511040

FOEFL2(I1,d):

Zs5T2(J):

TTHO = THETA-75

FOEFL(TyJ):

25I¢Jd):

= 2510¢4)

CREXYRY
A XXXXXX
fXXXXXN
CFXXXXX
e NYXXXY
A XAXXAX
aXXXXRY
CRXIXXXX

CRXRXXX

[RARPON
CXXAXXY
eXXF XX
fAXXXXY
SIXXXXX
e ¥YXXXXY
eXXXXXX
¢ SXXXXX

P XXX XXX

ELIRTSY
CEXAXYY
SEXXXXX
CXXXXXX
CAXRXXX
CXXXXYX
CAXXXXX
XXXXXX

e XXXXXX

XexXx DEG.

P XXXX2X
CXYLRER
S XXXXXY
a XXXXXX
CAYXXXY
CXEXXXX
e XXRXXY
o XXxXxX

s XXAXXY

+ TTHU*{2S511(J)

Xy XXy
CcARXXYY
CYRXYXY
eXXXXX A
CXEXXXX
CAXRYXYX
CERXXXY
W XXY yxx

A XXYRXY

eXXYRXEX
CXrxrY;
eYAYYAX
eXXXXXX
«X2XXRY
CXAXXXY
XXX X
e XXXXXX

XX EXY

WPATXRX
CTXXNXY
W XXYXXX
WY XXXXY
CXRXXXX
eXYXyyy
CXXXAX)
eXXYrXX

CTERXYXDY

PXRYXXY
S FRXRXR
e MAXYXX
CXXXXXY
YXXYXY
CXXXXRX
XXX XXY
eXXxyxyx

«JIXEXY

«?YXEXLY
CRYXYAY
CXXEY R X
aXYXyxx
CXYXYYX
e XY2XXX
eXXXXXX
s AXXXXX

eXXXPRX

CEXI XXX
eXYXYXX
a XXy XXX
CXKEXFYX
XXXy XX
eXYXXXX
o XXXXXX
s XXXXXX

e YXRXXN

CEXXYIX
AN YEN
CXXRYXX
D AXXXYY
CTYXXAY
CXXXXXX
eXXXxXxy
P XXXXXX

eAXXXXEX

W 7XXXXX
s LFRFXX
P XXXXXX
CXXXXXX
e XXX XXX
YXrrxy
CAXXXXX
e XXYXYxX

e XXXYXX

Sample Page 3

+ TTHD®Z5I2(J))

CTXRXXX
WS REYY R
e XXYX¥X
e XXXXXY
SIX¥XEX
XXX
«VXXYYY
CXAXRXXX

CAXRXXXX

eXXYXYX
JIAXI XX
e 2XAXXX
W AXIEXN
WYARYXx
aRXXNYX
CYXXXEYX
WYXXXXY

o KTEXY

TYXRYY
CAREANY
CYRXXXX
S TRXXXY
WTXXRXR
e EXXXXX
PHRXEXYX
aXRIXXRX

eXXRXEX

CTERXXNR
CYRYERY?
s IXXYYX
e YXXXXX
«TXXXY A
IXXYYX
e NXRXNX
P XXXXEX

P XXXXXX

XY AXXY
YRXYXR
P XXXXXX
«XXXXXX
CXXXYXX
CTXXYRX
CXXXXXX
CAXXY XY

W XYXYEX

PXXXYXX
XXy XX
JAXRYXX
SXXRY XX
CXRXXRY
CXXRYXY
SXXRXXX
CEXAYXX

JYXRXXYX

CVXXYXX
CXXXYaX
eYXXYXX
XX XXXX
CRRXY XX
WXXXX XY
CXREYXX
PAXAXY X

eXXXIXY

CXXXYXX
CXXXXXY
e XXXXXY
AXXXYXX
e XXXXXX
e XXXXAX
eXAXXXXX
CAXXXXX

CYXXYXX

e XXXXXX
fYXXXXX
XXXXXX
XXXXXX
e XXXXXX
CXRXXXX
CXXXXXX
XXXXXK

f XXXXXX

e IXXAXY
JXRXXXX
CXANXXX
fXEXXXX
eXXXXXX
CXXXXXX
DYXXXXX
JXXXXXX

XXX XXX

AXXXX
X XXXXX
JAXXXXX
eXXXXNXX
CXXXXXX
CAXXXXX
CXXXXRX
dXXXXXX

e XXXXXX

eXXXXXK
P XXXXRX
P XXAXXXX
JXXXXXX
e XXX XXX
eXXXXXX
e XXXXXX
e XXXXXX

CXXXXXX



let

PRSI U

FLEX=-BEAM TORSIONAL STIFFNESS CHARACTERISTICS
THETA=JCT = (THTMX)#MXS5 + (THTSX)*SXSR{VYERZ25%~ 254Y5%) + (THTMC)*(MYS*ybe M75425) + (THTM1)®(MYSeYSee MZS5eY5?)

+ (THTSDI®(SZ5#YS~ SY5%25) + (THTS1)%{S25#Y5*~ SYS#25°)

THTMX THTSX THTHC THIM] THTSD THTS]

XXX o XXX XXX XXa XXXXXX AXXe XX XX XX XXY JYAXXXX 2 XXX XXXXXX XXX o XX XXRX

CCEFFICIFNTS FOR QUADRATIC VARIATIONS OF PITCH-FLAT AND PITCH-EDGE COUPLINGS WITH PITCH ANGLE

1 AnCI(I) AWLCIY Aw21I RELMW(])
1 CXXXXX e XXXXX «XXXXX o« XXXXX
2 A XXX XX CXXXXX XXXXX « XXXXX
3 P XXAXX fXXXXX « XXXXX @« XXXXX
K AVO LK) AVI(K) Ay2(K) RELMY (K)
1 o X¥XXXX CXXXXX e XXAXX e XXXXX
2 e XXXXX CYXXXX CXXXXX CXXKXX

PSEUDC-FLATWISE MCDE SHAPE (DEFLECTIONS DUE TO UNIT LOAD AT INBOARD END OF CANTILEVERED TORGUE TuBF)

27 SX.XXXXE-YY IN/LE BLADE TIP DEFLECTION = X, XXXXE-YY IN/LB
N Tox GH cwe GuPP
XeXXXXX Ko XXXXX X XXXXX X o XXXXX
¥ e XAXXX X o XXXXX XeXXXXX X o XXXXX
C XeXXXXX XoXXXXX XoXYXXX Xo XXXXX
¥ oXXXXX XoXXXXX XeXXXXX XeXXXXX
Xe XXXXX XeXXXXX XoXXXXX XaXXXXX
XoX XXXX X o XXXXX X XXXX X Xe XXXXX

N XoXXXXX XeXXXXX XaXXXXX Xe XXXXX

TORSIONAL RETENTION SPRINGS AND EFFECTIVE FLEx~dFAM TORSIONAL STIFFNESSES

KTHETAL KTHETA2 KTHETAZ GJ-EFF TRAZ
XXMeFYXYX PXXIXRYY XXX oXXXX) XY GXFXRY XY2 Xyxxx
Sample Page 4



In Sample Page 5 are shown typical modal information for the inputted
flatwise and edgewise bending modes. For each such mode the (nondimensional)
modal frequency, pitch-flat (or pitch-edge) coupling and inputted mode shape
and spanwise derivatives are listed. 1In addition the listing presents the
derived incremental deflection vectors which account for blade twist (see
equations (7) through (10)). Within a flatwise modal information group, the
DVB and DVE arrays correspond to those first order Av spanwise functions due
to built-in twist and torsional modal twist, respectively. The DWWBB, DWWBC
and DWWCC arrays correspond to those second order AW functions due to the
combinations of bullt-in twist with itself, built-in twist with pseudo-torsion
mode (control) twist, and pseudo-torsion mode twist with itself, respectively.
The various arrays, DV2BP, DV2EP, DWW2BBP, DWW2BCP, and DWW2CCP are the first
spanwise derivatives of the second components (those with superscript "2") of
the above discussed arrays, DVB, DVE, DWWBB, DWWBC, and DWWCC, respectively.
The UWE nonlinear deflection arrays correspond to the bracketed integral
function defined in equation (36). Within the edgewise modal information
group, the various arrays, DWB, IWE, DVBB, DVVBC, and DVVCC etc., correspond
to similerly defined spanwise functions involving twist and the edgewise
modal deflection and spanwise derivative arrays.

The first group of output parameters presented in Sample Page 6 consists
of the inputted torsion modal arrays together with the derived pseudo-torsion
mode shape (as defined by Figure L) and spanwise derivative, The remsining
output parameter group consists of the spanwise distributions of various
pertinent seroelastic quantities. The X and XCEN arrays are the nondimen-
slonal distances of the centers of the segments from the offset and rotor
axis, respectively. The units of the CHORD array are feet. The angle of
attack descriptors THETA-AERO, PHI and ALPHA are, respectively the geometric
aerodynamic pitch angle, the inflow angle, and the resulting section angle-
of-attack, all in degrees. These angles are calculsted using the inputted
Initial conditions on azimuth angle and on the response variable deflections

end velocltlies, The resulting Mach number and aerodynemic coefficients are
used to define the perturbational airloads used in the eigensolution. The
quantity KAPPA/U is the spanwise variation in aerodynamic moment damping
coefficient which when multiplied by the local pitch rate approximates the
potential flow unsteady pitching moment coefficient. The quantity (Yloc/L4)/c
is the spamwise distribution of quarter chord offset from the reference axis
nondimensionalized by chord. The dynamic and structural quantities in the
third group of this output page includes the QUAD arrsy which constitutes the
integration weighting numbers for spanwise integration. The THETA-STR array
is the pitch angle distribution of the structural principle axes and has the
units of degrees and, in general, differs from the aerodynamic pitch angle
distribution. The two arrays, TWIST-BLT and TWIST-TOT, are the nondimensional
structural twist rate distributions of the built-in twist and the total twist
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LINEAR AND NONLINEAR MODAL DEFLECTION VECTORS

MODAL FREQUENCY = X XXXXX

PITCH=-FLAT COUPLING, AW(]1). =

PITCH-EODGE COUPLING

FLATEISE MODE 1
N X GY GWP GuPP DVE ov2sP OwwBB
1 fXXXXX « XXXXX e XXXXX o XXXXX CXXRXX JXXXXX SXXXXX
2 fXXXXX e XXXXX SAXXXX « XXXXX e XXXXX «XXXXX «XXXXAX
3 S AXXXX «XXXXX SAXXXX o XXXXX e XXXXX S XXXXX XX XXX
. S XXXXX «XXXXX S XXXXX » XXXXX PXXXXX o XXXXX «XXXXX
. « XXX XX «XXXXX CXXXXX o XXXXX PXXXXX $XXXXX $XAXXX
. XXX XX SAAXXX S AAXXX . XXXXX JXXXXX S XXXXX S XXXXX
N «XXXXX CXAXXX SXXXXX o XXXXX SXXXXX PXXXXX e XXXXX
QUADRATIC DEFLECTION VECTORS DUE TO TORSION
Jz 1y (2)
N X OVE Dv2ee DVE OvV2EP ove
1 «XAXXX o XXXXX o XXXXX SXXXXX «XXXXX «XXXAXX
2 S XXNXX XXXXK « XXXXX JXXXXX S AXXXX SXXXXX
3 «XXXXX $ XXXXX e XXXXX «XXXXX CKXXXX S XXXXX
. SAAXXX «XXXXX o« XXXXX S XXXXX fXXXXX o XAXXX
. o XXX XX SXXXXX «XXXXX SXXXXX CXXXXX o XXXXX
. S XAXYN - LS XXXXX S XXXXX SXXXXX e XXXXX e XXXXX
N XXX XK CXXXXX o XAXXX «XXXXX CXAXXX e XXXXX
EDGEWISE MODE 1 MODAL FREQUENCY =  XoXXXXX
N X GV GvpP GVPP ows Dn2BP Dvved
1 CAXXXK SXAXXK oXXXXX « XXRXX SXXAXX P XXXXX XXXXX
2 XXX XK SAXXXX «XXXXX o« XXRXX e XXXXX «XXXXX SXXXXX
3 S XXXXK SRXXXYX P XXXXX « XXXXX CXXXXX fXXXXX S XXXXX
. «XXXXX S XXXXX JXXXXX o XXXXX CXXKAX SXXXXX SXAXXX
. e XXXXX fXXXXX SXXKXX « XXXXX SXXXXX «RXXXX e XXXXX
. SAAXXX «XXXXX oXXXXX o« XXXXK e XXXXX A XXXXX e XXXXX
N XXX XX SXXXXX e XXXXX o XXXXX JXXXXX S XXXXX e XXXXX
OEFLECTION VECTORS DUE TO ELASTIC (MODAL) TWIST,
Jz o
N X DWE Dw2EP DWE Dw?2EP DWE
1 s XXX XX XXXXX o« XXXXX P XXXXX o XXXXX o« XXXXX
2 XXX XX oXXXXX o XXXXX oXXXXX oXXXXX «XXAXAX
3 o« XXX XX SAXXYX » RXXXX fXXXXX fRKXXXX S XXKXX
o XY XAX «XXXXX o« XXKXX S XXXXX SXXXXX P XXXXX
. o XXKXX e YXXXX o« XXXXX SXXXXX » XXXXX 2 XXXXX
. S XXXXX T A XXXXX o XXXXX o XAXXX fAXXXX «XAAXX
N «XXAYX CXXXXX o XXXXX XAXXX «XXXXX «XXXXX
Sample Page 5

DwW2BBP

X XXXX
o X XXXX
«XXXXX
X XXXX
«XXXXX
o XXXXX
o X XXXX

13}

Dv2ge

o XXXXX .

«XXXXX
«XXXXX
e X XXXX
o XXXXX
o X XXXX
X XXXX

Dvv2BeP

X XXXX
«XXXXX
« XXXXX
X XXXX
o X XXXX
fXXXXX
a XXXXX

DWEt1,J),

DW2EP

SXXXXX
» XXXXX
X XXXX

o XXXXX .

X XXXX
X XXXX
S XXXXX

DWWBC

oXXXXX
«XXXXX
e XXXXX
o XXXXX
o XXXXX
o XXXXX
«XXXXX

AL IENTY)

o XXXXX
fXXXXX
«XXXXX
«XXXXX
o XXXARX
«XXXXX
o XXXXX

AVI1)
OvvecC

o XXXXX
XXXNXX
o« XXXXX
fXXXXX
«XXXXX
o XXXXX
o XXXXX

Ow2EPI1,U)

«XXXXX

DWu2sCP

« XXXAXX
« XXXXX
«XXXXX
« XXXXX
o XXXXX
«XXXXX
o« XXXXX

2)

« XXXXX
e XXXXX
«XXXXX
o XXXXX
«XXXXX
¢ XXXXX
«XAXXX

e XXXXX

DVV2BCP

e XXXXX
e XXXXX
« XXXXX
o XXXXX
o XXXXX
fXXXXX
e XXXXX

puNCC

. XXXXX
«XXXXX
o XXXXX
# XXXXX
«XXXXX
o« XXXXX
«XXXXX

3

o XXXXX
o XXXXX
e XXXXX
« XXXXX
«XXXXX
CaXXXXX
S XXXXX

pyvcee

oXXXXX
«XXXXX
S XXXXX
«XXXXX
«XXXXX
o XXXXX
SXXXXX

owwa2cce

° XXXXX
o XXXXX
«XXXXX
e XXXXX
«XAXXX
# XXXXX
fXXXXX

MODAL TWIST (DVE{1yJ)y DV2EP{LlyJl} AND TO FLATWISE BEANDING (UKE(D,M))

(%)

o XXXXX
XXXXX
o XAXXX
e XXXXX
$XXXXAX
o XXXXX .
o XXXXX

pvvacce

S XXXXX
o XXXXX
«XXXAXX
SXXXXX
e XXXXX

T XXXXX

o XXXXX



(including elastic response and control inputs), respectively;. these arrays
have the units of radians, The quantities TENSB, EIYB, EIZB and MASSB are,
respectively, the blade tension, flatwise bending stiffness, edgewlse bending
stiffness and mass distributions all nondimensionalized in the standard
sense, The (Y1ONA)/C and (Y10CG)/C arrays are, respectively, the edgewise
bending neutral axis and mass center offset distributions nondimensionalized

by chord.
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TORSION MODES

2

T e e 0 WA -

o XXX XX
o XXXXX
e XXXXX
fXXX XX
o XAXXX
XXX XX
o XXX XX

6Tt

«XXXXX
2 XXXXX
o XXXXX
XXXXX
«XXAXXX
o XAXXX
AXXAXX

61P11)

JXXXXX
SXXAXX
SYXXXX
S XXXXX
JXXAX
SXXAXX
SXXXXX

GT(2)

CXAXXX
fXXXXX
«XXXXX
«XAXXX
aXXRXX
fXXXXX
e XXXXAX

GIPL2}

o XXAXX
oXXXXX
XX XAX
«XXAXX
SXXAXX
CXXXXX
o XAXAX

PAPTAL DISTRIBUTIONS OF AERODYNAMIC AND DYNAMIC/STRUCTURAL QUANTITIES

13

T e o o e

- A T A

X

° XXXXX
XXX XA
o XXX XX
XXXYX
XXX XX
XXX XX
XXX XX

o XXX XX
XXX XX
o XAXYX
o XXXXX
e XXXXK
XXX XX
s AXX XX

XCEN

o XXXXX
fKAXXX
o XAXAN
o XXXXX
P XXXXX
f XXXXX
AXYXXX

XCEN

oXXxXN
oAXXXX
S ANAAA
o XAXXX
SAXXXX
o XXX¥X
S XXXXX

CHORD

fXXXXX
W YXKXX
«XXXXX
fXXKXX
o XAXXX
S XXXXX
«XXXXX

QUAD

XXXXX
P XXXXX
oY AAAN
CXXXXX
fXXXXX
aXXAXX
o XXXXX

THETA-AERO

A XXX
XaXXX
XL XXX
XeXXX
XoXXX
XoXXX
XoXXX

THETA-STR

XeXXX
Ko XXX
ReAXAX
Xe XXX
XaXXX
Ao XXX
XeXXX

PHI

XXX
o XAX
o XXX
« XXX
XXX
XXX
CAXX

TWIST=BLT

XXXXX
o XXXXX
e XARAR
P XXEXX
AXXXX
AXXXX
PXXXXX

ALPHA

XoeXXX
Xe XXX
KeXXX
XoXXX
Ko XXX
XeXXX
Ko XXX

TWIST-TOT

SXXXXX
o XXXXX
SRAARA
P AXXXX
S XXXXX
SXXAXX
S XXXAXX

MACH

o XXX
« XXX
«AXX
o XXX
XXX
«XYX
XXX

TENSB

SXXXX
JXXXX
SXAXX
CXXXX
SXXXX
e XXXX
SXXXX

6T¢3)

o XXAXXX
oXAXXX
«XAXNK
CXAXXX
o XNAXX
X XAXX
o XXXXX

L

X XAXR
X XXXX
SXXXXX
X XXXX
X ¥XXX
X XXXX
SXXXEX

E1Y3

e XYXXX-

XXXXX
fXAAAR
fXXXXX
X XXXX
o XXXXX
X XAXX

619¢3)

oXXXXAX
oXXXXX
e XAXXX
«XAAXX
«XXXXX
SXXXXX
oAAXXX

[41]

CRXXXX
XXXXX
o XXXXX
o XXXXX
o XXXXX
SXXAXX
«XXXXK

€178

e XNXXX
CXXXXX
S AXAXX
CAAXXX
«XXAXXX
CAXXXX
e RXXXX

o]

e XXXXX
SXXXXX
S XXXXX
S XXXXX
o XXXXX
XXXXX
SXXXXX

(Y10NA) /C

o XXXXX
SXXXXX
S AXAXR
o XXXXN
SXXXXX
XX XXX
XXXXX

KAPPA/U

«XXXXX
oXXXXX
«XXXXX
SXXXXX
« XXXXX
«RXXXX
XXXXX

HASSB

Ne RXXXX
X o XXXXX
KXo XXRNX
XoXXXXX
XeXXXXX
XeXXXXX
XeXXXXX

tY10c/8d /¢

oXRXXX "
oXXXXX
T e XAXXXX
S XXXXX
SXXAXX
T e XXXXX
W XAXXX

{Y10C6)/¢C

oXXAXXX
S XXXXX
o XAXXAX
oXXXXX
oXXXXX
«XXXXX
o XXXXX



Results of Solution Part I - Eigensolutions

Sample Pages 7, 8, and 9 present the pertinent details of the
eilgensolutions. There are three distinct eigensolutions calculated and the
three results are headed, respectively, by the following titles:

1. TRUNCATED (LINEAR TERMS ONLY) VACUUM CASE
2. LINEARTZED NONLINEAR VACUUM CASE
3. LINEARIZED NONLINEAR NONVACUUM CASE

In the first case, all terms nonlinear in the response varisbles and
terms involving aerodynamlc loadings are omitted. In the second case, those
nonlinear inertial and elastic terms omitted in the first eigensolution are
retained and linearized sbout the inputted response variables (initial condi-
tions on response variable deflections and velocities ~-- locations 67 through
70 and 280 through 303). Note that if these locations are inputted equal to
zero this second elgensolution 1s automatically omitted. The last case
includes the locally linearized perturbational alirloads with the linearized
formulation of the second eigensolution. As shown in Sample Page 7, the
beginning of each eigensolution lists the A, B, and C matrices, which pre~
multiply the acceleration, velocity and displacement response vectors, res-
pectively, to define the eigenproblem. The extracted eigensolutions (coupled
roots and frequencies) are then listed by root pairs. At the bottom of
Sample Page 7 and the top of Sample Page 8 are presented the typical format
for the case where each of the root pair is real. For each root the eigen-
vector or GENERALIZED MODE SHAPE is presented, normalized to the largest
amplitude. . The number of elements to this vector is identicel with the dimen-
sion of the A, B, and C matrices, and represent, in order, the coupled rela-
tive responses of the flatwise, edgewise, and torsion modes. The arrays labeled
PHYSICAL MODE SHAPE consist of the relative spanwise distributions of inplane
(Y5), and out-of-plane (Z5) and pitching (THETA) components of the coupled
mode shape. The Y5 and Z5 deflections are nondimensionalized by blade radius,
whereas THETA 1s in radians.
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PART 1. EIGENSOLUTIONS OF VARIOUS LINEARIZATIONS OF EQUATION SET - CHARACTERISTIC R00TS AND COUPLED MODE SHAPES -

TRUNCATED (LINFEAR TERMS ONLY)

A MATRIX

A XXNXXE =YY
CXXNXF~YY
S XXXXF =YY
e XXAXE~YY
W YXXXE-YY
CXXXXF YV

g MATRIX

fXXXXE-YY
PXXXXE=YY
CXAXXF=YY
CXXXXE=YY
CXXXXF-YY
TeXXXXE-YY

C MATRIx

fYXXXT-YY
fXXXXT=YY
JXXXXF =YY
SXXXYXF-YY
CXXKRE-YY
CXXXXE-YY

ROOTS € 1, &) =

GENIRALLIZED “0DE SHAPE ( 1)

PHYSTCEL N
MLIDE SHAPE
1
2
3
N

e XXXXF =YY
e XXXXF =YY
o XAXXF-=YY
e XAXXE ~YY
e XXXXF =YY
e XXXXE =YY

P XXXXF-YY
W XXXXF =YY
e XAXXE-YY
CXXXXE~YY
e XXXXF=YY
aXAXXE =YY

e XXXXE~-YY
«XAXXE-YY
e XXXXE =YY
e XFZXXT =YY
e XXXXF =YY
e XXXXE =YY

e XYXXY

X

YYXXX
e X XAXX
CAYXXX
« XXXXX
X XXXX
e X XXXX
A XXXXX

VACUUM CaS

e XXXXF-YY
e XXXXE~YY
o XXXXF =YY
fAXXXF =YY
CXYXXF-YY
CXYXXF-YY

P XYXXE-YY
«XXXXF=YY
«XXXXF-YY
CXYXXE-YY
fXXYXXE-YY
dYXXXE-YY

XXX XFLYY
fXXXXE-YY
S XYXXE~-YY
fXYXRE =YY
CXXXXE-YY
CXXYXE=YY

aX¥XaXx

XXX XX

YS

@« XXX XX
s XXXXX
« XX XXX
» XXXXX
A XXX XX
e XXXXX
P XXXXX

3

XXXXF-YY
XXXXF =YY
XXXXF=-YY
e XAXRE-YY
CXXXXF =YY
XXXXE =YY

fXXXXE =YY
CXXXX[ =YY
XXXXE-YY
XXXXE=-YY
CXXXXE=~YY
XAXXF=YY

WXXEXRE =YY
SXXXXF-YY
CXXXXE =YY
CXXXXF =YY
CXXXXF =YY
CXXXXF =YY

e XXXXX

dXXXXF=YY
«XXXXE-YY
W XXXXE=YY
e XAXXE =YY
e XXXXF=YY
+ XXXXE=YY

e XXXXE=YY
P XXXXE-YY
o XXXXF-YY
«XXXXE-YY
e XXXXE-YY
«XXXXE-YY

CXRXKE =YY
o XXXXF-YY
SXKXXE-YY
SYRXXE-YY
DXXXXE=YY
JXXXXE-YY

e XXXAX
75

« XXXAX
e XXXXX
e XXXXX
XXX KX
o« XXX XX
D XXXXX
cXXXXX

Sample Page T
!

o XXXXE-YY
¢ XXXXE~YY
e XXXXE-YY
N XAXE -YY
CXXXXE~-YY
e XXXXF =YY

JXRXXKE -YY
o XXXXE=~YY
«XXXXE-YY
XXX XE-YY
CXXXXFE~YY
¢ XXXXE =YY

CXKXXE=-YY
e XXXXE-YY
e XXXXE~YY
o XXXXE-YY
CXXXXE=-YY
fXXXXE-YY

A XXXXX XRXXX

THETA

P XXXXX
s XXXXX
fXXXXX
fXXXXX
fXXXXX
«  XXXXX
« XXX XX

o XXXXX
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At the bottom of Sample‘Page 8 is presented the typical formst for the
case where the root pair consists of complex conjJugates. For this case,
in addition to the real and imaginary components of the roots, the equivalent
critical damping ratio, ZETA, and undamped natural frequency, WN, are given.
Note that for a complex pair of roots, the eigenvector is also complex;
the sign on the imaginary component corresponds to the root with the
positive imaginary part. Similarly, the phystcal mode shape is given, which
additionally contains the velocity component distribution to account “for
the generally nonuniform phasing along the span. The velocity components
are nondimensionalized by tip speed.

GESNTRPALIZED MODC SHAPE t 2) o X XX XX XXX XX «XXXXX dXXXXX X XXXX CXXXXX
" PHYSICAL N X Y5 F43 THE TA
MGDE SHAPE
1 e XXXXX SXXXXX e XXXXX e XXXXX
2 S XXXXX SXXXXX S XXXXX S X XXXX
3 X YXXX « XXXXX XXX XX fXXXXX
. e XXXXX o XXXXX o XXXXX fXXXXX
. e X XXXX P XXXXX o XXXKX f XXX XX
. e XXXXX e XXXXX SXXAXX S XXX XX
N X XXXX S XXXXX o XXXXX S XXXXX
RO0TS ( T, 4) = SXYXXY -1 X XXXXX ZETA = L XXXXX N S XoXXXXYX
GENERALIZED (RE) o« XXX XX FXXXXX CXXXXX SXXXXX SXXXXX JXXXXX
MINE SHAFE (Im) oxxxx¥ SXXXXX SXAXXX SXXXXYE G XXXXX fXXAXX
PHYSICAL N X Ys YS* 75 25# THETA THETAS
MCDE SHAPE
1 AAYXXX - JXXXXX SXXXXX SXXXXX . SXXXXX e XXX XX JYXXKY
2 CexYRXX o« XXXXX e XXXKX « XXXXX XXX XX fXXXXX SYAYXX
3 e X¥YXXX P XXXXX fXXXXX P XXXXX e XXXXY e XXXXX SXXXZLY
T S X YXXX PXKXXX SXXXXX e XXXXX CXXXKX SX XX XX LY XXXX
. o« XXXXX AXXXXX DXXXXX SXXXXX SXXXZXX SXXXXYX SXRXXX
. P XXXXX P XXXXX CXXXXX » XRXKX SYXXXX CXRXXX JXXXXX
N e XXXXX JXXY XX DXXXXX PXXXXX CXXXKY P XXXXX JXRY XX

Semple Page 8
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Should one of the roots in the nonvacuum eigensolution be unstable, as

indicated by & positive root or real part of a complex pair, an output listing
of the force phasing matrices appropriate to the instability is generated and

outputted as depicted in Sample Page 9. These matrices, having the same
size as the A, B, and C dynamic matrices, enable the various destabilizing

forces to be identified; descriptive material for their definition and inter-

prétatiqn“are contained in Reference 13.

A PHASING MATRIX

e XXXXE-YY «XXXXF-YY CXXXXE-YY SAXXXF-YY CXXXXE-YY CXXXXE-YY

SXXXXEIYVY s XXXXF=YY tXXXXE-YY JXXXXF=YY fXAXXXE=YY e XXXXE-YY
CXXXXE-YY e XXXXF =YY o XYXXF=-YY XXXXE-YY o XXXXE=-YY XXXXE-YY .
fXXXXE~YY P XXXXE =YY CXXXXE~YY eXXXXF=YY o XXXXE-YY .XXXXE-YVf
«XXXXE-YY P XXXXE=YY CXXXXE-YY CXXXXE=YY «XXXXE~-YY CAXXXE=YY
e XXXXE~-YY e XXXXE =YY fXXXXF~YY CXXXXE-YY CXXXXE=YY CXXXXE=YY

B PHASING MATRIX

JXXXXE =YY CXAXXE =YY WXXXXE =YY XAXXE =YY XXX XE-yY SXXXXE-YY
S XXXXE-YY SXXXXF-YY SXXXXE-YY XXXXE =YY DXXXXE-YY DXXXXE-YY |
SXXXXE=YY JXXXXE=YY XXXXF =YY SXXXXE =YY «XXXXE~YY CXXXXE=YY
SXXXXF=YY CXXXXE-YY S XXXXE-YY SXXXXE-YY aXAXXE=~YY SXXXXE=YY '
SXXXXE=YY DXXXXF =YY SXXXXE-YY WSXXXXE =YY DXKXXE-YY SXXXXE=YY |
CXXXXE=YY PXXXXT =YY LXXXXF-YY SXXXXE =YY SXAXXT =YY SXXXXE-YY

C PHASING MATRIX

CXXXXF=YY CXXXXE~-YY fXXXXF-YY XAXXE~YY o« XXXXE=-YY s XXXXE-YY
e XXXXE~YY SXXXXF =YY «KXXXF =YY XXXXF=-YY o« XXXXE-YY o XXYXE=YY!
e XXXXE=YY W XXXXE-YY S XXXXE-YY XXXXE-YY A XAXXE-YY XXXXE=YY
«XXXXE-YY CXXXXF =YY «XXXXE-YY CXXXXE-YY «XXXXE-YY «XXXXE-=YY -
XXXXE-YY W XXXXE-YY XXXXF-YY WXAXXE-YY W XAXXE-YY o XXAXXE-YY
e XXXXE-YY e XXXXF =YY ¢ XXXXE =YY XXXXF =YY W XXXXE~-YY XAXXE =YY ~

Sample Page 9

Results of Solution Part IT -- Time History Solutions

Sample Page 1O presents a variety of response and load quantities
defining the transient aeroelastic responses, The first row of parametefs
following the page title presents, for the subsequent time-history solution,
8 listing of the parameters defining the flight condition. These parameters
consist of the various control angles (in degrees), the inflow and advance
ratios, and the nondimensionalized values of the "momentum" induced velocity
components. The remainder of Sample Page 10 comprises the typical azimuthal

listing; this listing 1s outputted for every azimuth angle which is a multiple

of the print azimuth increment, input item no. 23.
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The first of the four groups of result quantities on this sample page
1ists the spanwise distributions of the pertinent aserodynamic quantities.
The inflow and total section angles of attack PHI and ALPHA, respectively, are
in degrees. The MACH NO., CL, CD, and CM are self-explanatory and nondimen-
sional. The airload distributions in the 75 and Y5 directions, SAZ5 and SAY5,
respectively, have the units of 1b/in., the aerodynamic pitching moment
distribution, MAX5, has the units of in.-1b/in. The quantities SDZ5,
SDY5, and MDX5 are "semi-dynamic" load distributions. These distributions
are dimensionally similar to those above described resulting from aserodynamics,
but instead arise from all the dynamic effects except the doubly time differentie -
ated ones (see equations 4le, 41b and sha, respectively). The quantityvMEX9
is the elastic torsion moment distribution which consists of those torsion
couplings arising from AEI, the tension-neutral axis offset and other twist
related elastic effects; it too, has the titbs of in.-1b/in.

The second group of result quantities consists of the instantaneous
generalized excitations, XI, and the generalized accelerations, velocities,
end displacements (Q**,Q¥, and Q, respectively) for each of the modal response
variables selected, all appropriately nondimensionalized. The generalized
excitations are defined to be the elements of the right hand side of equation

(3k4).

" "The third group of result quantities are comprosed mainly of blade
deflection and stress distributions. The vertical snd inplane deflections
are those in the Z5 and Y5 directions, respectively. All stress quantibies
have the units of 1b/in.2, whereas the torsion moment has the units of 1b-in.
It should be noted that, over the flexbeam-torque tube span, the flatwise
and edgewise stresses outputted are those only for the flexbeam whereas the
torsion moments and stresses outputted are those only for the torque tube.
The last two columns are the distributions of the A and B parameters needed
to define the unsteady airloads (see Reference 9 ). The fourth group of
result quantities at the bottom of the sample page consists of miscellaneous
deflection, load and stress results for the flexbeam and push-rod.

The line titled SPAR/FLEXURE PARAMETERS presents similar stresses and
torsion moments for the flexbeam at the indicated spanwise location; note,
however, that the outputted torsion moment is for the flexbeam immediately
inboard of the juncture. Of the remaining four quantities, PUSH-ROD (RELATIVE)
DEFL. (in.), TORQUE TUBE ROOT DEFL. (in.), and TORQUE TUBE ROOT SHEAR (1b.)
pertain only to cantilévered torque tube configurations wherein the "wobble
mode" option is invoked (input location 985). All three quantities are defined
in the positive Z5 direction. The quantity PUSH-ROD LOAD (1b) is the upward
(+25) directed load the push-rod exerts on the pitch horn/push-rod attachment
point; this quantity is calculated for all blade types. For composite bear-
ingless rotors, the push-rod load accounts for the total blade torsion moment
at the root less that torsion moment resisted by the flexbeam.
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LET

PART Il. TIKE HISTORY SOLUTION OF COMPLETE (NONLIKEAR) ESUATION SET - AEROELASTIC TRANSIENT PESPONSES

(33} 81
X XXX xoX

BSI = X XX LEGe

N % CEN [T}
1 SXAXX XXX
2 JXx¥x XX
3 Sy XoX¥X
. SXAXX Ko XAX
. JXAXK XeXYX
. SXXYX XeXXX
N WXXXX YoXXX

Cw}

xi XeXXE-YY

Cos» LaXAE=YY

on X XXE-YY

(4 XoXYE=YY
[ CEN VFRT
SEFL
T exxxX oX
2 JYxax oX
3 .XXXX oX
e SXXXX oX
. aXXXX X
. SXXXX oX
K JXXYX oX

S A2% 62S
XX Xo?XX XeXXX
OFyY = «x
ALPHA MACH NO. cL
Xe¥XX XX 2 YeXXXX
Xo¥XX PRAX Y XXXX
X XXX eAXX X XXXX
Xe XXX e XX & Y oXAXX
Aa¥AX aXXY YoXAXX
KoXXX XXX YaXXXX
X YXX «AX 2 YoXXYX
(%4 Cu3 Cun
AoXXL=YY X XXE-YY XXX
XeXXL=YY X XXE=YY $XXX
XReXXE=YY XaxXxi=YY o¥XAX
XeRXL=YY X XXE=YY SXXK
ICAL INPLAKE TORSION
-IN DEFL-IN DEFL-DEG
XX e XXX XXX
Xx o XXX o XXX
x o XX¥ XXX
XX XXX cAXX
X% e XAX XXX
XX e XXX XXX
xx kXX A XX

SPAI/FLEXURE PARAMETERS:

2 XXX

PUSH~®)7 (RELATIVE) DEFL, °

TOROUE-Tu"

€ ROOT

GEFL. =

XX

XX

Ia

IM

THETA 7
Xoa¥X

cv

XXXX
JXXXX
X XXX
XXX
XXXX
XXYR
s YXNXX

ovl

XeAXE-YY
ReXXE=YY
XeXXE-YY
XeXXi=YY

FLATWIS
STRESS

XXXAX o
XXAX o
XXXXa
XXXXa
¥YXXX,
XXXKa
XXXXo

XXXX

£ LAMSDA
«AXXXXK

cn

YoXXXX
Y XXXX
XX XXX
X EXXR
X XXX
Xo¥XXX
L AXXN

ov2

KeXXE=YY
Ao XXE=YY
Ko XXbL =YY
Ko XME=YY

SAZS

oXXXX
XXX
o XXXX
oXXYX
o XXXX
W AXXX
WXAXX

oy

«XYX
AYX
XYX
XXX

€ E0GEWISE
STRESS

XXXXo
XAXX .
YAYX

L]
o XXX X
SAYS
oXAXX .
AXXX .
«RXXY .
XXX .
XXX X .
o XXXX .
AXXY .
3 orT1
XeXXL-YY
XoXXE=YY
R XXL=YY
KeXXE =YY
TORSION
STRES S
XXXKo
XXX,
XXXXo
XXXXo
XXXX,
XXXX,
NXXXAo
XXX o
PUSH=RO

vo
SXXANX

XAXX
YRAXX
XXXX
XRXX
XXXA
xAxXry
xyx

e12

oAXX
oANX
oKX
«AXA

CORNER
STRESS

XXKXRo
XARXX o
XXXXR o
XXXXX o
XXXXX o
XXXXRo
AYRXN e

L LOAD

TOROUE=TUBE ROOT SHEAR

Sample Page 10

viC
2 JXXXXX

$0Z%

A XXXX
XXXX
XXX
s RXXX
XXXX
YXXX
XXXX

013

s RXX
XX
oAYZ
o XXX

Toeslun
MONFNT

YAA XX
AaNeXY
AXYeXR
AXF e XX
XAX XN
XaveXX
7 e XA

XXX XX
AXX XX

X¥X XX

s0YS

«AXXX
«XAXX
RAXX
«XXXX
oXXXX
AXXAX
oRYRX

Ls

Lo

v
XXX

18
xxx

L'} 13

SXXXX
SXXXK
S XXXX
SAXXX
SAXXX
JXXXX
SXAXX

BETA

XXX
XXX
s XXX
XXX

XX
XX
XX
oKX
XX
XX
XX

xxx
XXX
xxx
xXxx
xXxx
xxx
xXxx

* MEX®

S XXXX
oXXXX
oXXXX
o XXXX

DELTA

x7X
o XAY
o KXX
XXX

S XXXXX
«XXXXX
oXAXXX
oXXXXX
XXXXX

«XXXXX
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After the time-history solution has elther converged to periodicity or
run to maximum flapping ti*ials (input location 10) various integrated loads
are calculated for one final blade revolution to form the aerodynamic perfor-
mance and stress results deplcted in Sample Page 1l. For each of eight (8)
performance quantities results are presented in nondimensional coefficient
form, in nondimensional form divided by solidity, and in actual dimensional
form, Note that ten (10) dimensional quantities are listed and the units are
1b for forces and 1b~ft for moments, as appropriate. The quantity EQU. DRAG
(1b) represents the combined power expended by the rotor due to rotor rotation
(torque) and translation (drag) divided by flight speed.

The next line duplicates the parameters defining the flight condition and
includes four (4) additional quantities which depend on the integrated perfor-
mence for evaluation., At the beginning of the time-history calculation it is
not known which part of the inflow ratio being used is due to ram effects and
which due to momentum induced effects. Once the integreted rotor thrust is
calculated, however, the induced portion of the inflow can then be calculated
using the simple usuval momentum formuls derived for flight in an infinite con-
tinuum (Reference 14), The complementary portion of the inflow represents the
ram effect from which the shaft angle-of-attack ALPHA S, in degrees, can be
calculated. The quantity VEL ACT. is the actual forward flight velocity, in
knots, consistent with the advance ratio used and the shaft angle of attack.
For finite forwerd flight speeds EQU. L/D is the 1ift divided by the equiva-
lent drag; for hovering cases this quantity is the figure of merit. PAR,
AREA, the rotor parasite (drag) area, in square feet, is the rotor dragdivided
by dynemic pressure. The line titled CORRECTIONS DUE TO WIND TUNNEL WALL
INTERFERENCE: consists of recalculations of those quantities which depend on
the induced portion of the inflow wherein the induced inflow is calculated
using the formulae derived for flight in wind tunnels or in ground effect
(Reference 11)., The remainder of Sample Page 1l consists of reductions of the
various stresses (1b/in.2) and the push-rod load (1b.) to median and & peak-
to-peak values over the final rotor revolution.
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TOPSION MOMENTS
PEDIAN 172 PTP
oX oxX
oX eXX
oX oXX
oX oKX
oX oAX
o XX
oX oAX
o XX SXX

PAR. AREA
XeXXX

4

EQU. DRAG

. XeXX

ALPHA S
Xe XXX



150

Should major (trim) iterations be used (see description of input items
60 and 62 through 65 in Appendix II) output depicted on Sample Page 12 will
be generated by the program. 'The first line consists of the.zeroth, first
coslne and first and second sine harmonics of first flatwise mode response, in
radlians, and an estimate of an effective angle-of-attack on the retreating
blade side (y = 270°), in degrees. The nonzero elements of the depicted (G)
MATRIX give, for each row, the partial derivatives of the four trim quantities
(CL, cRM’ reépectively) with respect to the four control quantities
being used fM g» Bjg, and (sin ag), or v, vlc’ Vig, 8nd (sin as)), for
each respective column The elements of this matrix are formulated using
approximate linear strip theory with reversed flow effects and are calculated
for either set of control quantities, as appropriate. The ERROR VECTOR con=~
sists of the differences between the four requested trim quantities and those
achleved in the preceeding time-history. The two lines depicted give the error
vector in dimensional (1b and 1b-ft) and nondimensional forms, respectively.
The CORRECTION VECTOR consists of those changes to the control gquantities
which should null the above described error vector. The correction vector is
obtained from the premultiplication of the inverse of the G matrix with the
error vector, but the corrections are scaled, if necessery, to prevent control
changes of more than 2 degrees within any one iteration. The control param-
eters whose increments are depicted in this output page are, in respective
order: 0 o-» Aygs Bygs (sin ag), A, C > Vo Vies 804 vy ; the first three have
units of degrees and the rema.inder are dimensionless or nondimensionalized.



TRIM ITERATION, OW10 = X XXXE=YY QuiIC =  XeXXXE=YY QW1S = X XXXE-YY LS T X XXXE-YY - A(ﬂor = xx.'xx

(6) MATRIX
XoXXME=YY  XoXKXE=YY X XKXE=YY X XKXE=YY 0,000 0.000 0,000 0.000 - 0,000
XoXXXE=YY  XoXXXE=YY X XXXE=YY  X.XXXE=YY 0,000 0.000 0.000 0,000 - 0,000
XoXXXE=YY  XoXXXE=YY  X.XXXE=YY X XXXE=YY 0.000 0,000 0,000 0.000 0,000
XoXXXE=YY  XXKXE=YY  XoXXXE=YY  X,XXXE=YY 0,000 0.000 0.000 0.000 0,000
ERROR VECTOR
KeXXXE=YY  XoXXXE=YY X XKKE-YY X, XXXE-YY  0.000 0.000 0,000 0.000 0.000
KeXXXE=YY  NoXXXE=YY X XXKE=YY X, XXXE=YY 0,000 0.000 0,000 . 0,000 o 0.000

CORRECTION VECTOR

X XXXE=YY XeXXXE~YY NeXXXE=YY - X XXXE=YY X.!lxt-“ XeXXXCYY Xo XXXE=YY =!.m-" Ao XINE=YY "

Sample Page 12
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Once the time-history solution has converged to periodicity and all mejor
iterations have been completed, the progrem optionally performs harmonic anal-
yses of the azimuthal variations of various response quantities (see descrip-
tions of input items 48 and 73 through 75 in Appendix IT ). The outputs of
these harmonic analyses are depicted in Sample Pages 13 through 15. In each
of these sample pages the harmonic information for each response variable is
contained in the appropriate horizontal band of five rows. The harmonics are
listed by columns up to & maximum of 10 harmonics. All harmonic analysis out-
put depicted on these sample pages assume & negative harmonic content form in
keeping with the (negative) harmonic form conventionally as.umed for the blade
pitch control and rigid flapping angles. For each harmonic of response vari-
able five quantities are outputted; these quantities are, respectively, the
cosine and sine components, the equivalent amplitude and phase angle, and
lastly, the amplitude of the harmonic relative to all the other harmonic ampli-
tudes outputted. Sample Page 13 depicts the harmonic analyses of the dimen-
sionless modal response variables selected wherein QW(I), QV(K) and QT(J) are,
respectively, the (I) flatwise, (K) edgewise and (J) torsional uncoupled mode
responses.,

Sample Page 14 depicts the harmonic analyses of the total shears and
moments exerted by one blade to the hub., In contrast to the steady hub loads
listed in the AERODYNAMIC PERFORMANCE AND STRESSES output (Sample Page 11)
which are caelculated by integrating only the aerodynemic load distributions,
the total hub loads which are herein harmonically analyzed are calculated by
similerly integrating the combined aerodynamic and the dynamic load distribu-~
tions, The longitudinal, lateral and vertical hub shears comprising the first
three quantities of this sample page all have the dimensions of 1lb and are
defined in the x,-(aft), y;-(starboard), and z;-(up and along axis of rotation)
axis directions, respectively. The roll, pitch and yaw moments comprising the
latter three quantities on this sample page have the dimensions of 1b-ft and
are defined positive (using the right-hand rule) about the x -, ¥1-» and z;-
axes, respectively. Note that the aerodynamic rolling momez% whose output is
depicted in Sample Page 11 is defined positive starboard side down and is
opposite from the harmonically analyzed total rolling moment depicted in Sam-
ple Page 14, Sample Page 15 depicts the harmonic analysis of the flatwise
stresses at the center of each of the spanwise segments. A similar output
listing is provided for both edgewise and torsional stresses.
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XeXXXE=-YY

XeXXXE=~YY
XXXeoX
XXX

XeXXXE~YY

XeXXXE-YY

XeXXXE-YVY
XXXaX
XXX

AeXXXE-YY

X XXXE-YY

XaXXXE~YY
XXX o X
XXX

XeXXXE=-YY
XeXXXE-YY
XeXXXE-YY
XXX eX
e XXX

XeXXXE=~YY

XeXXXE=-YY

XeXXXE-YY
XXX aoX
XXX

XoXXXE=~YY
XeXXXE=YY
XeXXXE=YY
XXXeX
o XXX

XeXXXE-YY

XeXXXE~YY

XoeXXXE~YY
XXXoX
XXX

XaXXXE-YY

XeXXXE-YY

XaXXXE=-YY
XXXeoX
XXX

HARMONIC ANALYSIS OF BLADE

XaXXXE-YY

XoXXXE=YY

XeXXXE-YY
AN X
XXX

XeXXXE=YY

XeXXXE-YY

XeXXXE-YY
XXX X
XXX

XoXXXE=YY
XoXXXE~-YY
XoXXXE=-YY
XXX o X
o XXX

XoeXXXE=-YY

XeXAXE=-YY

XeXXXE~-YY
XXX X
XXX

XoXXXE-YY

XeXXXE-YY

XoXXXE=YY
XXX oX
«XXX

XoXXXE=-YY

XeXXXE-YY

XeXXXE=YY
XXX X
XXX

X XAXE-YY
XeXXXE-YY
XeXXXE~YY
XAX X
o XXX

XoXAXE~-YY

XeXXXE=-YY
X XXXE=-YY
XXX aX
XXX

X XXXE-YY

XoXXXE-YY

XoXXXE-YY
XXXaX
XXX

XeXXXE-YY

X XXXE=YY

XeXXXE-YY
XXXeX
XXX

X XXXE=YY
XeXXXE-YY
X XXXE=-YY
XXX o X
o XXX

X XXXE-YY
XoXXXE-YY
X XXXE-YY
XXX o X
a XXX

X AXXE-YY
XeXXXE=-YY
XeXXXE-YY
XA o X
o XXX

XeXAXE=-YY
XeXXXE=YY
XoXXXE-YY
XAXoX
e XXX

X XXXE-YY

X XXXE-YY

X XXXE-YY
XXXo X
XXX

XeXXXE=YY

XeXXXE-YY

XoXXXE=YY
XXXoX
XXX

XeXXXE-YY
X XXXE-YY
XeXXXE-YY
XXXaX
« XXX

XeXXXE~-YY
X XXYE-YY
XeXXXE-YY
XXX X
« XXX

Sample Page 13

RESPONSES

XeXXXE=-YY
XeXXXE-YY
XeXXXE=YY
XXXoX
« XXX

X o XAXE-YY
XoXXXE-YY
X XXXE-YY
XXX X
o XXX

XoXXXE-YY
XeXXXE=-YY
XeXXXE~YY
XXXaX
« XXX

XeXXXE-YY

XoXXXE-YY

X XXXE-YY
XXX e X
XXX

XeXXXE-YY
XoXXXE-YY
XeXXXE-YY
XXXoX
« XXX

XeXXXE-YY
X XXXE=-YY
XoeXXXE-YY
XXXoX
a XXX

XoXXXE-YY
XeXXXE-YY
XeXXXE-~YY
XAXX
o XXX

X XAXE-YY
X« XXXE=YY
XoXXXE-YY
XX XX
-« XXX

XoXXXE=YY
X o XXXE-YY
XeXXXE=-YY
XXXaX
« XXX

XeXXXE-YY
XeXXXE=-YY
XeXXXE=-YY
XXXaX
. XXX

XoeXXXE-YY

XoXXXE=-YY

XeXXXE-YY
TXX XX
o XXX

XeXXXE~YY
XeXXXE-YY
XeXXXE~YY
XXXo ¥
o« XXX

R eXXXE-YY

XeXXXE-YY

XeXXXE-YY
AXK o X
XXX

X AXXE-YY
XeXXXE-YY
XeXXXE=YY
XXX o X
o XXX

X XXXE~YY
XeXXXE-YY
X XXXE=-YY
XXXeX
o XXX

XeXXXE=-YY

XeXXXE=-YY

XeXXXE~-YY
XXXaX
XXX

XeXXXE=YY
XeXXXE~YY
XoXXXE-YY
XXXeX
o XXX

XoXXXE~YY

XeXXXE-YY

X XXXE-YY
XXXeX
XXX

XeXXXE=-YY
XeXXXE=YY
XeXXXE-YY
XXXeX
« XXX

X XXXE-YY
XoXXXE-YY
XoXXXE-YY
XXX eX
o XXX

XeXXXE=-YY
Xe XXXE-YY
XoXXXE-YY
XXX X
o XXX

X o XXXE=YY

Xe XXXE-YY.

XoXXXE=YY
XXX X
XXX

Xo XXXE-YY

XeXXXE-YY

X XXXE=YY
XXXoX
«XXX

Xe XXXE=YY

XoXXXE~YY

X XXXE=YY
XXX X
XXX

10

XeXXXE=YY

XeXXXE=-YY

X XXXE-YY
XXX X
XXX

X KXXE=YY

XeXXXE=YY

XoXXXE=YY
XXX X
XXX

Ko XXXE=YY

Xe XXXE=YY

A XXXE=YY
XXXaX
XXX

X XXXE-YY

Xo XXXE~YY

XoeXXXE=-YY
XXX o X
XXX

XeXXXE=YY
Xe XXXE~YY
X XXXE=YY
XXXeX
XXX

XeXXXE~Y

XeXXXE=Y

XoeXXXE=-Y
XXXeX
XXX



™t

LONG, SHR

LAY, SHR

VERT, SHR

ROLL MOMT

PITCH moMT

YAW HOMT

XX

AXoX

XXX

XXeX

AN X

XXXNX o X
XXXXX o X
XAARXR X
XKXo XX
Re XX

AXAXAX o X
XAXXX o X
AXXKXeX
XXX XX

XeXX

XXAXX X
XXXNXoX
AXARX o X
AR XX

XoeXX

XXXXXoX
XXXXXeX
XXXXX o X
XXX, XX
XeXX

XXXXXoX
XXXXAX o X
XARAX o X
XXX XX
XXX

XXANRX o X
XYXAX o X
XXXXX o X
XXX XX
XeXX

XXXeX
XXXeX
ARN X
AXX o XX

XX

XXXaX
XXXoX
XXX o X
XXXoXX

XX

XXX X
XXXaX
XXX X
XXX XX

XX

XxAeX
XXX X
AN X
XXX, NN

XX

Xax.x

XXX X
XXXaX
XXX XX

XX

HARNOMIC ANALYSIS OF Hup SHELARS AND

AXXoR
AXXe X
XANXe X
XXX XX

XN

XXXeX
XXXoX
XXX X
XXXe XX

XX

XXXo X

XXXoX

XXX o X

XXX XX
XX

XXXeX
XXX X
XXXeX
AN XX

XX

AXXaX
XXXeX
XXXoX
XXX XX

kX

XXXeX

XXX X'

XAXeX
XXX XX
XX

AKX
XXX
XXX
KAX o XX
o XX

XXeX
XXX
XXX
XXX XX
XX

AN X
XXX
XXeX
XXXoXX
XX

Ko X
XXoX
XXoX

AXX o XX

oXX

XXX

XXX~

XXeX
XXX XX

XX

XXo X
XheX
AN X
XAX XX
XX

XXX
xXo X
AN X
XXK XX
XX

XXeX.

XXoX
AXeX
XX2AeXX
XX

KXo X
XXeX
AXeX
XXXoXX
XX

XXX
AN X
XX

AXX XX

oXX

XXX
AXoX
XXX
XXX XY
XX

Sample Page 14

NOMENTS

XXX
¥R X
Xn,x

XX

AR X
LY
XXXoAX
XX

AKX
xx X
XXX
XXNoXX
XX

¥YXoX
Ao X
¥YX R
XXX XX
XX

XXX
XXX
XX, X
KXXoXN
XX

XXX
XXoX
AX o X
XXX XX
XY

XXX
XXX
ANeX
AXK XX
XX

XXX
AKX
XheX
XAX L AX
Ce XX

XXeX
XXX
XXeX
XXX aXX
XX

XXeX
XXeX
AXeX
XXX XK
o XX

XXX
XXX
XXX

XX XN

XX

Xx,x,
XXeX
AN X,
XXX oXX
| eRX.

ANeX
XXeX
AXX
XNXo XX
XX

XXX
XXa X
AKeX

XXX XX
XX

XXaeX
XXX
XXa X
XXXeXX
XX

XXX
XXX
XXX
XXX o XX
kX

AXoX
XX X
XXoX

XXX eXX

Xy

AXeX
XXX
XXX
XXX QKX
X

XXX
XXX
XAXL XX
XX

XXX
AXeX
XXeX
XXX o XX
« XX

AXeX
XXX
XX oX
XXX XX
XX

XXeoX
XX e X
XXX
XXXoXX
«XX

AXeX

AN X
XXX
KXxaXX
o XX

ax.x
XY o X
XNaX

XXX oXX

XX

XXeX
KX oX
XXX
XXXaXX
. «XX

XXoX
XXX
XXoX
XXXaXX
XX

A% X
XXeX
XXX
XAXaXX
XX

XNaX
AXeX
XXeX
XXX XX
XX

Axex
AY X
XXX
XXXoXX .
oxX

XXoX
XY, X
XX ex
CRAXG XX
XX



Gt

N

[N

s

X CEN

AXXX

e XXXX

# XXXX

oXXXX

«XXAXX

o« XXXX

AD

XXXX o X

XXXXeX

XXXXeX

XXXX X -

XXXX X

XXXXoX

XXXX X
XXXX X
XAXK o X
XX . X
XXX

XXXX X
XXXX o X
XXXXoX
XX o X
XXX

XXXXeX
XXXKeX
XXXXaX
AX'e X
XXX

XXXX X
XXXX X
XXXX o X

XXeX
aXXX

XXXX X
XXXXeX
XXXXoX
XXeX
«XAX

XXXX0X
XXXX X
XXAX WX

XXX
_eXXX

XX XX o X
XXX X
XXXX X
XXX
XoXXX

XX XX o X
XXX X
XXXX o X

XXaX
XaXXX

XX XX o X
XXXaX
XXXX e X

XX %
XoeXXX

XXXX o X
XXX o X
XXX X

XXX
XaXXX

XXXX o X
XXX X
XXXX X

XX o X
X XXX

XX XX oX
XXX o X
AXXXaX

XXeX

XaXXX

HARMONTIC ANALYSIS OF FLATWISE STRESSES

(™)

XXXXeX
XXXXaX
XXAX X
XXX
o XXX

XXXXeX
XKXXXaX
XXXXeX
XXeX
XXX

ANAR X
XAXXeX
XXXXaX
XXX
XXX

XXXXa X
XXXXeX
XXAR o X
XXoX
XXX

YXXX o X
XXXXoX
XXXXoX
XXeX
XXX

XXXXaX
XXXX X
XXXXoX
XXeX
XXX

XXeX
XXXoX
XXXeX

XXoX

« XXX

xXoX
XXX X
XXX X
XXX
XXX

XXX
XXXoX
XXX X

XXX

« XXX

XXeX
XXXaX
XAX o X

XXeX

« XXX

XXeX
XAN o X
XXXoX

XXX

XXX

XXeX
XXX aX
XXXeX

XXX

« XXX

X¥XeX
XXXoX
XXXeX
XXoX
XXX

XXXeoX
XXK X
XXXeX
XXX
XXX

XXX X
XXXeX
XXXeX
¥YXeX
XXX

XXXaX
XXXeX
XXX eX
XXX
XXX

XXXeX
XXX R
XXXaX
XXaX
(3353

XXXeoX
XXXKeX
XXXaX
XA N
XXX

Sample Psge 15

XXX X
XXXaoX
XXX o X
XXeX
o XXX

XXXaX
XXX o X%
XXX X
XXoX
o XXX

XXX X
XXX X
XXX o X
XX eX
XXX

XXX X
XXXoX
XXXaX
XX.X
« XXX

XXXeX
XXX o X
XXXeX
XXeX
XXX

XXXoX
XX¥e X
XXX oX
XXX

XXX

XXoX
XXeX

XXeX *

XXeX
XXX

XXoX
XXeX
XXX
XXX
o XXX

XXX
XXeX
XXeX
XXeX
« XXX

XXaX
XXX
XXeX
XXeX
o XXX

XXeX
AX o R
XXoX
XXeX
XXX

XXeX
XXX
XXeX
XXX
XXX

XXoX
XXeX
XXoX
XXoX
XXX

XXX
XXe X
XXX
XXeX
XXX

XXX
XXoX
AX o X
XXX
XXX

XX oX
XXaX
KXo X
XXeX
XXX

XXX

AXeX °

XXoX
XXeX

XXX -

XXeX
XXeX
XXoX
AXe X
« XXX

XXaX
AR X
XXoX
XXoX
o XXX

XXoX
XXeX
XXeX
XXX
o RXX

XXaX
XXeX
Ak eX
XXX
XXX

XXeX
XXoX
XXX
XXeX
o XXX

XXeX
AR X
XXoX
XXX
« XXX

XXoX
XXX
XXaX
ANeX
« XXX

10

XXX
AN X
XXX
XXoX
XXX

XXX
XXX
XXeX
AXLX
-XXX

XXeX
XXX

XXX
ANoX .

o« XXX

XXX
XXX
XXX
XXoX
XXX

XX X
AN X
XX o X
XXoX
JXXX

XXoX

XXoX
XXoX
ANLX
XXX
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Results of Solution Iart-IIi -
Transient Spectral Stability Analysis

Transient time-history solutions are often difficult to interpret for
quantitative stability information. This is due to the fact that the total
responses so calculated inherently consist of several component modes similta-
neously and transiently approaching (or departing from) multi-harmonic perio-
dicity with a wide range of natural frequencies and inherent damping levels.
The extraction of the component responses at discrete frequencies in order to
examine their individual attenuation characteristics is the purpose of the
Trensient Spectral Stability Analysis (TSSA) portion of Program GLOO. The
details of this analysis, which utilizes Fourier Transform techniques, are
beyond the scope of this report but are treated in References 15.

Essentially the TSSA first performs Fourier transformations of selected
time-history date strings, which have been previously generated in the time-
history solution portion of the analysis (Solution Part II) and appropriately
saved., The purpose of the Fourier Transform is to identify, within these
time-histories, those frequencies whose amplitudes are relatively largest and
and which are herein denoted as "resonances". The TSSA then celculates the
transient behavior of the extracted amplitudes of these resonances over the
time-history time interval and estimates equivalent linear stability indilces
(cheracteristic exponent, critical damping ratio, and time to half amplitude).

Sample Pages 16 through 18 depict the output typically generated by the
TSSA. The sequence of output depicted is duplicated for each of the transient
response channels selected (see input locations 84 through 86, Appendix II).
Semple Page 16 depicts the output generated by the Fourier Transform frequency
identification portion of the TSSA. Shown at the top of the page is the tran-
sient response channel being analyzed and the frequency range wherein resonance
identification is desired (input locetions 87 and 88). The series of five out-
put items to follow consist of parameters defining the numerical Fourler Trans-
form; note that the results of the TSSA incorporate a time nondimensionaliza-
tion based on rotor speed, (). The tabulation of the Fourier Transform follows
wherein, for each frequency (harmonic of the fundamental as determined by the
total nondimensional time interval), the real and imaginary parts, the square
of the amplitude and the logarithm to the base 10 of the amplitude are out-
putted. Generally, this tabulation will consume more than the one page indi-
cated in Sample Page 16. After this listing is completed, those frequencies
and their respective square amplitudes which are found to be resonances, as
defined above, are listed.



PART 11I. TRANSICNT-SPECTRAL STABILITY ANALYSES OF SELECTED AEROELASTIC TRANSIENT RESPONSES

TRANSIENT RESPONSE CHANNEL NOo XX - FOURIER TRANSFORM AND RESONANT FREOUENCY IDENTIFICATION

NUMAER OF POINTS IN TIME SERIES
(ND) TIME INCREMENT

LENGTH OF INTERVAL

FUNDAMENTAL FREQUENCY

HIGHEST FREQUENCY

Tl!ﬁLlT!ON OF FOURIER TRANSFORM

HARYONIC FREGUFNCY
 XXCXXK
CXXXXXX
CXRXXXX
o XXXXAX
CKXXXXX
PXXXXAX
SXXXXXX
SAXXLXX

Ze o s WN=O"

BY HARMONIC OF FUNQAMENTAL FREQUENCY

DESIRED FREQUENCY RANGE =

X¥x

«XXXXX RAD
XX XXXXX RAD
«XXXXYX /REV
XXeXXXXX /REV

COMPLFX FOURIER TRANSFORM

X e XXXXXXRE=YY
XeXXXXXXXF=YY
XKaXXXXXXXE=YY
NeXXXXXXXE=~YY
XeXXXXXXXE=YY
XeXXXXXXXE-YY
e XAXXXXXE=YY
Ko XXXXXXXE=YY

RESGNANCE FREQUENCIES FOUND BY SEARCH POUTTINE

X o XXXXXXXF-YY
Ao XXXXXXXE =YY
XoXXXAXXXE~YY
X o XXXXXXXE=YY

LY V)

Ko XXXXAXXE=YY
Lo XXXXXXXC =YY
X o XXXXXXXE =YY
Ko KXXXXXXE=YY

+00000p0 1
XeXXXAXXXE=-YY]
XeXXXXXXXE-YY]
X o XXXXXXXE=~YY]
XoXXXXXXXE-YY]
o XXXXXXXE=-YY]
XeXXXXXXXE~YY]
Ko XXXXXXXE=YY]

THERE ARE LESS FUNDAMENTAL PFSONANCE FREQUENCIES THAN EXPECTED, INPUT

QESONANT FPECUENCIES ODETERMINED TO BE FUNDAMENTALS
1

X e AXXAXXXF-YY
2 XaKXXXXXXC =YY
3 XeAXXXAXXF =YY

Sample Page 16

XX TO

XaXX ( /REV)

TRANSFORM
MAGNITUDE

Ao X¥XXXXXE -YY
Xe XXXXXXXE=YY
XeXXXXXXXE=YY
XeXXXXAXXE-YY
XeXAX¥XXXE~YY
XeXXXXXXXE=-YY
XaXXXAXXXE=-YY
XeXXXXXXXF=YY

4 FOuUND = 3

L0G TO BASE 1
GF MAGNITUDE

X XXARAXNE =YY
X XXXXXXXE=YY
XoXXXXXKXE~YY
X XAXXXARE=VY
X XXXXYXXE=YY
X XXXXXXXE=YY
XoXXXXXXXE=YY
X XXXXXXXE=YY

Aside from their several nonlinearities, the dynamic equations of motion
of helicopter rotor blades implicitly contain several linear terms with period
coefficlents, which arise from the perlodic character of the airloads in for-

ward flight.

It is not unexpected then, that the aerocelastic time-history

responses generated by these equations should manifest Floquet Theory charac-

teristics (see Reference 16).

of 1dentifying "multiple resonances" which are separated by (plus or minus)
multiples of the rotor frequency and which would be found to have spproximstely

the same damping level.

search are further screened to extract only those frequencies with distinet
noninteger values and which, within the set having the same noninteger values,
These extracted frequencies are herein
denoted "fundemental resonances" and are the only ones examined further for

have the largest transform magnitudes.

stability in the TSSA,

)

In particular, the Fourier Transform is capable

Hence, the resonant frequencies found by the resonance
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Sample Page 17 depicts the results of frequency fine tuning and response
stability estimation for each of the fundamental resonances extracted earlier
in the TSSA. The results for each of these frequencies are presented in
columnar fashion, The top: horizontal blocks of output represent the fre—
quency fine-tuning results, Of most practical importance are the values
labeled OPTIMIZED FREQUENCY which are, in nondimensional (per rotor rev) form,
the best estimates of the frequency of the fundamental resonant frequenciles.
These frequencies are obtained by an optimization technique, the details of
which are beyond the scope of this report. The remainder of the output
depicted on this sample page (for each fundamental resonance) consists of
three horizontal blocks of output representing various estimates of the effec-
tive damping characteristics. These three types of blocks are best explained
by first describing Sample Page 18. This sample page depicts, columnarly for
each of the fundamental resonances indicated in Sample Page 17, the natural
logarithm of the magnitude of resonant frequency content at each (nondimen-
sional) time indicated. If these amplitude logarithms attenuate with time,
then that frequency content (mode) is deemed stable, and conversely the slope
of that attenuation with time is a measure of the effective linear damping; in
the analysis this slope is obtained by a simple least-square fit. It may
happen that the variation of amplitude logarithms with time is neither mono-
tonic increasing or decreasing in which case & condition of maximum or miniwmum

-amplitude is defined. By weighting the least-square fit either uniformly or

with an appropriate function accentuating the initial or terminal ends of the
amplitude logarithms data string, the three latter horizontal blocks of output
depicted in Sample Page 17 are generated. Within each of these blocks, the
first quantity depicted is the nondimensional CHARACTERISTIC EXPONENT, which
18 analogous to and Interpreted in the same way as the real part of the eilgen-
value discussed in the output for Solution Part I. The REVS to (MAX/MIN) AMPL,
is an indication of the asymptotic behavior of the component response. STAN-
DARD DEVIATION is the root-mean-squared error achieved in the least-square
curve-fit and is an indication of the regularity of the amplitude logarithm
function depicted in Sample Page 18, and of the accuracy of the stability
estimation. Based upon the OPTIMIZED FREQUENCY outputted at the top of the
sample page, the equivalent CRITICAL DAMPING RATIO is calculated from the
characteristic exponent using standard formulae. Finally, the output item
labeled REVS TO HALF AMPLITUDE is the third alternate way in which the equiva-
lent linear damping result is presented.

In Sample Page 19 is depicted the typical additional pege of output
generated at the beginning of every case following the first case of a multiple
case sum, The two columns depict, respectively, the location numbers and data
velues for the newly inputted data distinguishing the present case from the
previous one. This feature is intended solely as an ease of usage output to
assist in data management,

8



TRANSIENT ﬁESPONSC CHANNEL NO, XX = RESONANT FREQUENCY FINE TUNING AND CRITICAL DAMPING RATIO CALCULATIONS

INITIAL PERCENTAGE XXeXX

INITIAL NO. OF DATA PTS, xxx

NOs FOUPIER COEF., CALCS, xxx
-FINAL NO. OF DATA PTS, xxXx xxx 1ex
INITIAL FREQUENCY ESTIMATE { /REV) AXXNAX X AXNXNX X XXXXX
CPTIMIZED FREQUENCY t /REV) fXAAXX NoXXXXX NaXANXX
HARMONIC X L4 xn

UNIFORMLY wEIGHTED CHARACTERISTICS

CHARACTERISYIC EXPONENT e XXXYX o« XXXXX fXXXXX
REVS TO (MEX/MIN) AMPL, XaXXXXX XeXXXXX XoXXXXX
STANLARC DEVIATION XNXYX e XXXXX fXXXXX
CRITICAL DAMPING RATIQ e XXXXX tXXXXX .ll!li
REVS TO HALF AMPLITUDE XX AKXV X AN UXANXX AXLAXAAX

INITIAL END WEIGHTED CHARACTERISTICS

CHARACTERISTIC EXPONENT aXXXXX aXXXXX W XRXXX
REVS TC (MAX/MIN) AMPL, XoXXXAXY XoXXXYX ¥oXXXXN
STANDARD DEVIATION CXXXXX e XXXXX e XXXNX
CRITICAL DARPING RATTIO XXXXX e XXXXX .ill!!
REVS TU HALF AMPLITUDE' X XNXXXYX XX XXXNXX XX, AXAXX

TERMINAL END WEIGHTED CHARACTERISTICS

CHARACTERISTIC EXPONENT e XXXXX « XXXXX dXXXXX
REVS TO (MAX/MIN) AMPL, XaXXXXX NaXXXXX XeXXXXX

STANLARD DEVIATION e XXXXX «XXRXX CAXXXX
CRITICAL DAMPING RATIO « XXXXX e XXXXX «XXXXX
REVS TO HALF AMPLITULNE AN o XXAXX ARG XRNAX AR XAXNN

Semple Page 17



0ST

¥TI/6LZ~SE9 = 9L6T :3DIJJ0 DNIINIHG INIWNUIACD ‘SN

XX XX
XX XX
XXXX
XXXX
XX XX
XXX
XXXX
XXXX
XX XX
XXXX
XY XX
XX XX
XXXX
XXXX
xXXxx
XX XX

(ND) TIME

Qe

XeXXXXXE-YY
XeXXXXXE-YY
X XXXXXE-YY
XeXXXXXE-YY
X XXXXXE-YY
XeXXXXXE-YY
XoeXXXXXE-YY
Xo XXXXXE=-YY
XeXXXXXE-YY
Xo XXXXXE-YY
XeXXXXXF=-YY
XaXXXXXE=-YY
XeXXXXXE-YY
X XXXXXF=YY
Xe XXXXXE-YY

PROGRAM G40QO - CASE

2

NATURAL LOG OF FOUPIER COEFFICTENT (1ST HAPHMONIC OF OPTIMIZED FREQUENCY)

XeXXXXXE=-YY
XeXXXXXE-YY
XoXXXXXE-YY
XeXXXXXE=YY
XeXXXXXE-YY
X XXXXXE-YY
XeXXXXXE=-YY
Xo XXAXXE-YY
X XXXXXE-YY
X XXXXXE-YY
XeXXXYXE-YY
XeXXXXXE=-YY
XoXXXXXT~YY
Xe XXXXXE-YY
Yo XXXXXE-YY
XeXXXXXE=-YY

OF A MULTI-CASE RUN.

XoXXXXXE=YY
XeXXXXXE-YY
Xe XXXXXE=YY
XeXXXXXE~-YY
XeXXXXXE=-YY
Xo XXXXXE=YY
XeXXXXXE=YY
XoXXXXXE=-YY
XeXXXXXE=~YY
Xo XXXXXE-YY
Xe XXXXXE=YY
XeXXXXXE-YY
XeXXXXXE~YY
XeXXKXXXE-YY
XeXXXXXE-YY
XeXXXXXE-YY

Sample Page 18

SXXXXXXE+YY
P XXXXXXE#YY
SXXXXXXE +YY
SXXXXXXE+YY
CXXXKXXE+YY
SXXXXXXE+YY
fXXXXXXE+YY
fXXXXXXE+YY
CXXAXXXE+YY
SXXAXXXESYY
SXAXXXKE+YY
e XXXXXXE+YY
P XXXXXXE oYY
S XXXXXXE+YY
SXAXXXXE+YY
CXXXXKXXE+YY

Sample Page 19

XoXXXXXE~-YY
XoXXXXXE-YY
X XXXXXE=-YY
Xe XXXXXE-YY
XoXXXXXE=YY
XeXXXXXE=-YY
XoXXXXXE=YY
XeXXXXXE=-YY
X XXXXXE=YY
X o XXXXXE=-YY
X XXXXXE-YY
XeXXXXXE=YY
X« XXXXXE-YY
XoXXXXXE=YY
X XXXXXE=-YY
X e XXXXXE-YY

INPYUT DATA REPRESENTING CHANGES T0 THE PPEVIOUS CASE ARE AS FOLLOWS:®



